Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7051.

What is trigonometry ?

Answer» Three side measurement
Tri -three gon -side metry measurement
7052.

use euclid\'s divisiono algorithm to find the HCF of the following numbers 1. 65 and 117

Answer» 117 = 13 {tex}\\times{/tex}\xa03 {tex}\\times{/tex}\xa0365 = 13 {tex}\\times{/tex}\xa05HCF (117, 65) = 13LCM(117,65) = 13 {tex}\\times{/tex}\xa05 {tex}\\times{/tex}\xa03 {tex}\\times{/tex}\xa03 = 585Here is given that:{tex}HCF =65m-117{/tex}{tex}13=65m-117{/tex}{tex}65m=130{/tex}m =\xa0{tex}\\frac { 130 } { 6 5 } ={/tex}2
7053.

The sum of the first nth odd term of an ap

Answer» Thanks bhi nahi kaha mehnat bekar kerdi me thanks ke deta ho thanks kunki mene ye padhe bahut accha
N^2is right and
{tex}s_n ={n\\over2}[{2a+(n-1)d}]{/tex}in case of odd number series{tex}s_n ={n\\over2}[{2(1)+(n-1)1}]{/tex}{tex}s_n ={n\\over2}[{2+n-1}]{/tex}{tex}s_n ={n\\over2}[{n+1}]{/tex}is the required answer,
7054.

An observer 1.5 m tall is 20.5 m away f

Answer» let ht of observer=CD\xa0=1.5mht of tower = AB=22mdistance between observer and tower = AC=20.5mht of remaining tower from his eye D\'B=22-1.5=20.5mangle of elevation tan D=20.5/20.5=1 thus Angle=45o
7055.

sum of all 2-digit multiples of 3

Answer» Sum of 2digit multiples of 3 are:12,15,18,21..........................99a=12d=15-12 =3an=99an=a+(n-1)d99=12+(n-1)399-12 =3n-387=3n-33n=87+33n=90N=30Sn=n÷2(a+an)Sn=30÷2(12+99)Sn=15(111)Sn=1665
7056.

In a right angle triangle ABC ,BC=36015 ,AB=48020 ,find hypotenuse AC

Answer»
7057.

What I\'d area of triangle

Answer» 1/2*b*h or root s(s-a)(S-b)(s-c)
7058.

The value of √6+√6+√6+.......is

Answer» Let\xa0{tex}x = \\sqrt { 6 + \\sqrt { 6 + \\sqrt { 6 + \\dots } } }{/tex}\xa0......(i){tex}\\Rightarrow{/tex}\xa0x2 =\xa0{tex}( \\sqrt { 6 + \\sqrt { 6 + \\sqrt { 6 . . } } } ) ^ { 2 }{/tex}\xa0[Squaring both sides]{tex}\\Rightarrow{/tex}\xa0x2 =\xa0{tex}6 + \\sqrt { 6 + \\sqrt { 6 + \\sqrt { 6 + \\ldots } } }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2 = 6 + x{/tex} [From (i)]{tex}\\Rightarrow{/tex}\xa0{tex}x^2 - x - 6 = 0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(x - 3) (x + 2) = 0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x = 3, x = -2{/tex}{tex}\\therefore{/tex}\xa0x = 3 [{tex}\\because{/tex}\xa0x > 0]
7059.

tan 48° tan 23°tan 42°tan 67° = 1

Answer» tan48 tan42 tan23 tan67tan48 tan(90-48) tan23 tan(90-67) tan48 cot48 tan23 cot231×1=1
7060.

I can\'t understand triangles and solve the q can u help me plzz

Answer» I can help u
Yeah give your no
7061.

if ABC is right angle triangle at C if tan A =1/rout3 .find the value of sinA cosB +codA sinB

Answer»
7062.

How to do mid term factorization......how to find mid term

Answer»
7063.

Can 15 n ends zero for any natural number

Answer» No
No 15 n can never end with zero
no because every natural no should have 2 and 5 as a prime factors to end with digit 0.
Yes
7064.

SinA+cosA = 1

Answer» Not possible
No.it is not a identity. True will- sin2+ cos2=1
7065.

What is series

Answer»
7066.

Prove root3 is irrational

Answer» Given in ncert
7067.

(a+b)(a-b)

Answer» a2-b2
(a+b)(a-b)=a2-b2(a+b)(a-b)=a(a-b)+b(a-b)=a2-ab+ab-b2 =a2-b2\xa0\xa0\xa0\xa0
7068.

how to find the value of sin35 ? Give answer please

Answer»
7069.

An a. P consists 50 terms and its last term is 20th and the d=2.find the first term of an ap

Answer» n=50,no. of termsl=20, last termd=2, common differencea=?, first termFormula l=a+(n-1)d20=a+(50-1)2a=-78\xa0\xa0
7070.

A cube + B cube=10A sq. + B sq.=7A + B= ?????

Answer»
7071.

(a+b)³ =

Answer» a^3 + b^3+ 3a^2b + 3 ab^2
a^3 +b^3+3ab(a+b)
7072.

class 10 ch.6 ex 6.2

Answer»
7073.

If sec^ - tan^ =4 prove that cos^= 8/17????????????..... Let ^ be theta...???☺☺??

Answer»
7074.

X^2-6x=0

Answer» x2\xa0- 6x = 0x2\xa0= 6xx = 6
7075.

if P (-5,7) Q (0,y) PQ = 13 find y

Answer» (pq)2=(-5-0)2 + (7-y)213x13=25+49+y2-14y169=y2-14y+74y2-14y-95=0y2-19y+5y-95=0y(y-19) + 5(y-19)=0y=19 or y=-5
7076.

Find the discrimination of the equation 3xsqaure -2x+8=0

Answer» -92=D
7077.

What it AP

Answer» A sequence in which each term except the first is obtained from the previous by adding a constant value, known as the common difference of the arithmetic progression
Arithmetic progression
7078.

Is the maths easy or not ??? Give reason

Answer» It is very easy but you need BRAIN to solve. If you don\'t have brain you will hate it and if you have brain you will like it.. I have brain so I love it ❤❤❤❤❤.
Easy hai but itna bhi nahi
7079.

What is fundamental theorem

Answer»
7080.

How many methods are ther in chapter 3

Answer» Graphical method also
Elimination,Subsitation and Cross multiplication
7081.

Represent 9.3 on number line

Answer»
7082.

Represent 0n number line

Answer»
7083.

SinA+CosA is equal to root2.cosa then prove that sinA-cosA is equal to root2.sinA

Answer» sinA+cosA=root2.cosAS.B.S.(sinA+cosA)^2=root 2 sq.cos^2Asin^2A+cos^2A+2sinA.cosA=2.cos^2A1+2sinA.cosA=2.cos^2A---(sin^2A+cos^2A=1)2sinA.cosA=2cos^2A-1*L.H.S.*sinA-cosAS.B.S.(sinA-cosA)^2=sin^2A+cos^2A-2sinA.cosA=1-2sinA.cosA (sin^2A+cos^2A=1)=1-(2cos^2A-1) (2sinA.cosA=2cos^2A-1)=1-2cos^2A+1=2-2cos^2A=2(1-cos^2A)=2.sin^2A(SinA-cosA)^2=2.sin^2AsinA-cosA=root2.sin^2A (whole root)sinA-cosA=root2.sinA
7084.

Sectetha=x+1/x (given) prove that sectetha×tantetha=2X or 1/2X

Answer»
7085.

23-23

Answer» 0..
0
0
0
7086.

tanA+secA-(sec square A - tan square A)÷tan A - secA

Answer» 0
7087.

Diffine polynomial

Answer» Polynomial:- It is an expression consisting of variables (or indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables.An example of a polynomial of a single indeterminate x is x2 − 4x + 7.
7088.

What is theorm 6.1 proved it?

Answer»
7089.

2.÷9

Answer» Ans. Is 0.2
4.5 ans of this question ?
7090.

If sin3A=cos(A-26°)where 3A is an acute angle,find value of A

Answer» Sin3A=cos(A-26)Sin3A=sin263A=26A=26÷3
Thanks Bolne ki jarurat bahu hai
SinA= cos(90-A) sin 3A = sin(90-A+26) Sin3A = sin(116-A)3A=116-A4A=116A=116/4A= 29
29
26
7091.

What is Ap?

Answer» Arithmetic progression (AP) is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15, is an arithmetic progression with common difference of 2.
Arithmetic progression
7092.

sin 10 + sin 20 + sin 50 + sin 40 = sin 70 + sin 80 prove

Answer»
7093.

What you mean by secant????

Answer» Sec
7094.

Kx(x-2)+6 find the value of k

Answer» We have, kx(x - 2) + 6 = 0{tex}\\Rightarrow k x^{2}-2 k x+6=0{/tex}........(1)We know that quadratic equation {tex}ax^2+bx+c=0{/tex},a≠0, has equal roots if its discriminant D is 0.D = 0\xa0{tex}\\Rightarrow{/tex}{tex}b^2-4ac=0{/tex}{tex}\\Rightarrow{/tex}4k2 - 4(k)6 = 0 [from given quad. equ.(1); a=k≠0, b= -2k, c= 6]{tex}\\Rightarrow{/tex}4k2 - 24k = 0\xa0{tex}\\Rightarrow{/tex}4k(k - 6) = 0 {tex}\\Rightarrow{/tex}k - 6 = 0 [ since, k≠0]{tex}\\Rightarrow{/tex}k = 6\xa0Hence the value of K is 6.
7095.

Bpt theorem

Answer» IN A TRIANGLE THE LINE DRAWN PARLLEL TO ANYSIDE DIVIDES REMAINING SIDES PROPORYIONALLY
7096.

Find HCF and LCM of 8/9,10/27,16/81

Answer» HCF of fractions = HCF\xa0of numerators/LCM of denominatorsHCF= HCF\xa0of 8,10,16 / LCM\xa0of 9,27,81 = 2 / 81LCM of fractionss =LCM of numerators / HCF\xa0of denominatorsLCM = LCM\xa0of 8,10,16 / HCF\xa0of 9,27,81 = 80 / 9REMEMBER formula for finding HCF of fractions = hcf of numerators / lcm of denominators LCM ,,,,,,,,,,,,,,,,, = lcm of numerators / hcf of denominators
7097.

how to find common difference and write the first term

Answer» \'a\'is first term, \'d\' is common difference
Use the formula -last term(An)=a+(n-1)d
7098.

If sinA+2cosA=1prove that 2sinA-cosA=2

Answer»
7099.

HOW TO PROVE THAT A QUADRILATERAL IS TRAPEZIUM

Answer» Given in the quadrilateral ABCD{tex}\\frac{AO}{BO}=\\frac{CO}{DO}{/tex}or,\xa0{tex}\\frac { A O } { C O } = \\frac { B O } { D O }{/tex} ...(i)Draw\xa0EO {tex}\\parallel{/tex} AB onIn\xa0{tex}\\triangle A B D,{/tex}\xa0EO {tex}\\parallel{/tex} AB (By construction){tex}\\therefore {/tex}\xa0{tex}\\frac { A E } { E D } = \\frac { B O } { D O }{/tex}\xa0(By BPT)...(ii)From (i) and (ii) we get\xa0{tex}\\frac{AO}{CO}=\\frac{AE}{ED}{/tex}Hence by converse of BPT in {tex}\\triangle{/tex}ADC\xa0{tex}EO\\|CD{/tex}But\xa0{tex}EO \\|AB {/tex}So {tex}AB\\|CD {/tex}Therefore ABCD is a trapezium
7100.

Find the number of natural numbers between 101 and 999 which are devisible by both 2 and 5

Answer» we know that 1st number div by 2 and 5 = 110thus a = 110d = 10 (2 x 5 = 10)last number div by 2 and 5 = an = 990now we know that an = a + (n-1)d990 = 110 + (n-1)10880 = 10n - 10890 = 10nn = 89thus number of numbers between 101 and 999 are 89