Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7201.

Prove that 2x^2+4x+3 is a quadratic question..

Answer» The power is 2
7202.

root of 987

Answer» 31.416556145
√987=31.41...
7203.

If sec theta + tan theta = p , prove that sin theta = p^2-1/p^2+1

Answer»
7204.

1/(2x-3)+1/x-5=1 verify that this is a real root

Answer» 1/(2x-3)+1/(x-5)=1(x-5+2x-3)/(2x-3)(x-5)=1(3x-8)/2x2-10x-3x+5=1(3x-8)=2x2-13x+152x2-10x+23=0Here a=2 . b=-10,c=23D=b२-4ac =(-10)२-4(2)(23) =100-148 =-84 D<0Hence,in the given equation has no real root
7205.

Whats theorem and how congruency and similarity of two triangles are different ?

Answer»
7206.

Formula oo trignometry

Answer»
7207.

How to solve boat and stream question in class 10 maths

Answer» By making equation
7208.

Djsjaj

Answer» Jajsjd
7209.

The value of x which satisfies the equation √x^2-4x+3 + √x^2-9 = √4x^2-14x+6

Answer» 7
7210.

What is centeroid

Answer» The point where the medians of triangle interest
7211.

Ma

Answer»
7212.

Cot15cot16cot17...cot74cot75 Evaluate

Answer» Cot(90-75)cot(90-74).......cot74cot75tan75tan74...cot74cot751
7213.

Write the degree of the polynomial y³ - 2 y² + 3½ y + 7 ?????

Answer» 3
7214.

What is quadratic equation

Answer» "ax2 + bx + c = 0" is quadratic equation for the value of x is to factor the quadratic, set each factor equal to zero, and then solve each factor.The Quadratic Formula ax2 + bx + c", where a, b, and c are just numbers; they are the "numerical coefficients" of the quadratic equation they\'ve given you to solve.
7215.

Which term of the ap:21,18,15 ........is _81 ? Also is any term o give reason

Answer» continue from above check ur answer a35=21+34x-3 = 21-102= - 81 , also a8=21-7x3=21-21=0 ok verified
let nth term = - 81a=21d= - 3an=a+(n-1)d- 81=21+3-3nn=105/3=3535th term = - 81also 0=21+3-3nn=24/3=88th term = 0
7216.

if tan9θ=cotθ and 9θ

Answer»
7217.

If √3tan teetha=3sin teetha,find value of sin square teetha -cos square teetha

Answer»
7218.

How to solve polynomial

Answer»
7219.

Plz tell if cbse result for class 10th will include 10 % of preboard 1 and 2

Answer» No I hope
7220.

Find the distance between (-5,7), (-1,3)

Answer» root of (- 5 +1)2 + (7-3)2= root 16+16= root 32= 4{tex} \\sqrt2{/tex}
7221.

1/sec a-1 + 1/sec a+1 = 2 cosec a.cot a

Answer» Photo bhejo 9229510263 pe wha5sap
7222.

If angle B And angleQ are acute angles such that sinB=sing then prove that angle B =angleQ

Answer» Consider two right triangles ABC and PQR in which\xa0{tex} \\angle B{/tex} \xa0and\xa0{tex}\\angle Q{/tex} are the right angles.We have,In\xa0{tex}\\triangle ABC{/tex}{tex}\\sin B=\\frac{AC}{AB}{/tex}\xa0and, In\xa0{tex}\\triangle PQR{/tex}\xa0{tex}\\sin Q=\\frac{PR}{PQ}{/tex}{tex} \\because \\quad \\sin B = \\sin Q{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { A B } = \\frac { P R } { P Q }{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { P R } = \\frac { A B } { P Q } = k{/tex}(say) ...... (i){tex} \\Rightarrow {/tex} AC = kPR and AB = kPQ .....(ii)Using Pythagoras theorem in triangles ABC and PQR, we obtain\xa0AB2 = AC2 + BC2 and PQ2 = PR2 + QR2{tex} \\Rightarrow \\quad B C = \\sqrt { A B ^ { 2 } - A C ^ { 2 } } \\text { and } Q R = \\sqrt { P Q ^ { 2 } - P R ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { \\sqrt { A B ^ { 2 } - A C ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = \\frac { \\sqrt { k ^ { 2 } P Q ^ { 2 } - k ^ { 2 } P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } }{/tex}\xa0[ using (ii) ]{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { k \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = k{/tex}...(iii)From (i) and (iii), we get{tex} \\frac { A C } { P R } = \\frac { A B } { P Q } = \\frac { B C } { Q R }{/tex}{tex} \\Rightarrow \\quad \\Delta A C B - \\Delta P R Q{/tex}\xa0[By S.A.S similarity]{tex} \\therefore \\quad \\angle B = \\angle Q{/tex}\xa0Hence proved.
7223.

Trigonometic

Answer»
7224.

3x-x-4

Answer» 3x-x-4=03x-x=42x=4x=2
7225.

Qartatic equation

Answer» Equation in with highest degree is t w o is known as quadratic equation
Tuze nahi ata
7226.

Find the sum of 51 terms of the A. P. whose second term is 2 and the fourth term is 8.

Answer» 1,2,3,4,5,6......a+d=2 . a=2-d ................. ia+3d=8 .........iifrom i and ii2 - d +3d=82d=6d=3a= - 1S51 = 51/2(2a+ (51-1)d) = 51a+25x51x3 = 51x-1 + 3825 = 3774\xa0
a+d=2a+3d=8-d=-6d=6a+6=2a=-4
7227.

Find the sum of first 100 even natural numbers which are divisible by 5.This is a question of A. P.

Answer» numbers are 10,20,30,40,........................they form an APa=10d=10s100 = 50(20 + 990) = 50 x 1010 = 50500
7228.

Sa 1 questions paper please

Answer»
7229.

2x+4x+3y=0

Answer» =6x+3y=0 2x+y=0When x=1 then Y=-2When x=-3. Then y=-6
7230.

Find the 6 term from the end of the AP 17,14,11---- -40

Answer» Here a=17 d=14-17=-3Tn=-40a+(n-1)d=-4017+(n-1)-3=-4017-3n+3=-4020-3n=-40-3n=-40-20-3n=-60n=60/3n=20Total number of term in this AP=206th term from the end =(20-6)+1=15th terms T15=a+14d=17+14×(-3)=17-42=-256th term is - 25
zpwdjjqaxjssiw23
7231.

How to do ***

Answer»
7232.

X3+3x2+3x+1÷2x+1 plz answer only

Answer»
7233.

(a-b) cube

Answer» a3-b3-3ab(a-b)
7234.

I want the solution of sample paper 2008-09 half yearly...Plz someone help me to get the solution...

Answer»
7235.

TheoremArea base

Answer»
7236.

Write down the prime factrosation of 720

Answer» 2*2*2*2*5*3*3
2*2*2*2*5*3*3
7237.

Tan square theata + cot square theta +2 = SEC square theata * cosec squre theata

Answer» We have,{tex} \\mathrm { LHS } = \\frac { \\tan \\theta - \\cot \\theta } { \\sin \\theta \\cos \\theta } = \\frac { \\frac { \\sin \\theta } { \\cos \\theta } - \\frac { \\cos \\theta } { \\sin \\theta } } { \\sin \\theta \\cos \\theta } = \\frac { \\frac { \\sin ^ { 2 } \\theta - \\cos ^ { 2 } \\theta } { \\sin \\theta \\cos \\theta } } { \\cos \\theta \\sin \\theta }{/tex}{tex} \\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\sin ^ { 2 } \\theta - \\cos ^ { 2 } \\theta } { \\sin ^ { 2 } \\theta \\cos ^ { 2 } \\theta }{/tex}{tex} \\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\sin ^ { 2 } \\theta } { \\sin ^ { 2 } \\theta \\cos ^ { 2 } \\theta } - \\frac { \\cos ^ { 2 } \\theta } { \\sin ^ { 2 } \\theta \\cos ^ { 2 } \\theta }{/tex}{tex} \\Rightarrow \\quad \\mathrm { LHS } = \\frac { 1 } { \\cos ^ { 2 } \\theta } - \\frac { 1 } { \\sin ^ { 2 } \\theta }{/tex}{tex} \\Rightarrow \\quad L H S = \\sec ^ { 2 } \\theta - \\ cosec ^ { 2 } \\theta = \\left( 1 + \\tan ^ { 2 } \\theta \\right) - \\left( 1 + \\cot ^ { 2 } \\theta \\right) = \\tan ^ { 2 } \\theta - \\cot ^ { 2 } \\theta = \\mathrm { RHS }{/tex}
7238.

Formula for the midpoint of class interval

Answer»
7239.

Ncert pg-76 Qu no-2

Answer» By spilleting method for ex. The midle term of qus no.1when we add and subtract the given no. Is 3 and we multiply the no.is.10
7240.

If sinx+sin^2x+sin^3x=1Then 4cosx=?

Answer»
7241.

Radius =150 , circumference?

Answer» Given,Radius =150We know that,Formula of circumference if 2πrNow,=2×3.14×150=6.28×150=942Hope this ans will be helpful to you..
7242.

formulae of median

Answer» Median =3mean-2mode maybe
7243.

Is optional question are coming in examination of subject math or other side books

Answer» Refer ncert maths text book pg 171 last line.
No..
7244.

Which type of questions bank is important for board exam

Answer»
7245.

In class 10 mainly exam comes from ncert or extra¤¤¤¤

Answer»
7246.

Is there will be internal choice will be given in class 10 board paper of Mathematics

Answer» No.......there no choices in CBSE maths
7247.

Find the value of cos theta and sin theta

Answer» 1
7248.

44+55=33 kaise hoga

Answer» Not possible
7249.

Jwyjxjhd

Answer»
7250.

If sin Q and cos Q are roots of equation (2p+1)x^-7p-3=0 has equal roots

Answer» The given quadratic equation is:\xa0(2p + 1)x2 - (7p + 2)x + 7p - 3 = 0Here, a = (2p + 1), b = -(7p + 2) and c = 7p - 3We know that, D = b2 - 4ac= [-(7p + 2)]2 - 4 {tex}\\times{/tex} (2p + 1) {tex}\\times{/tex} (7p - 3)= 49p2 + 4 + 28p - 4(14p2 - 6p + 7p - 3)= 49p2 + 4 + 28p - 4(14p2 + p - 3)= 49p2 + 4 + 28p - 56p2 - 4p + 12= -7p2 + 24p + 16Since it is given that the given equation has real and equal roots, so D = 0 i.e.,{tex}\\Rightarrow{/tex}\xa0-7p2 + 24p + 16 = 0{tex}\\Rightarrow{/tex}\xa07p2 - 24p - 16 = 0{tex}\\Rightarrow{/tex}\xa07p2 + 4p - 28p - 16 = 0{tex}\\Rightarrow{/tex}\xa0p(7p + 4) - 4(7p + 4) = 0{tex}\\Rightarrow{/tex}\xa0(p - 4)(7p + 4) = 0{tex}\\Rightarrow{/tex}\xa0p - 4 = 0 or 7p + 4 = 0{tex}\\Rightarrow{/tex}\xa0p = 4 or {tex}p = - \\frac{4}{7}{/tex}Therefore, after substituting the value of p in the given equation, the two equations will be:9x2 - 30x + 25 = 0 [For p = 4]{tex}\\Rightarrow{/tex}\xa09x2 - 15x - 15x + 25 = 0{tex}\\Rightarrow{/tex}\xa03x (3x - 5) - 5x (3x - 5) = 0{tex}\\Rightarrow{/tex}\xa0(3x - 5)2 = 0{tex}x = \\frac{5}{3}{/tex}or\xa0{tex}\\left( {2 \\times \\left( { - \\frac{4}{7}} \\right) + 1} \\right){x^2} - \\left( {7\\left( { - \\frac{4}{7}} \\right) + 2} \\right)x{/tex}{tex} + 7\\left( { - \\frac{4}{7}} \\right) - 3 = 0{/tex}\xa0[For {tex}p = - \\frac{4}{7}{/tex}]On solving we get,x2 - 14x + 49 = 0{tex}\\Rightarrow{/tex}\xa0x2 - 7x - 7x + 49 = 0{tex}\\Rightarrow{/tex}\xa0x (x - 7) - 7 (x - 7)= 0{tex}\\Rightarrow{/tex} (x - 7)2\xa0= 0{tex}\\Rightarrow{/tex} x = 7Thus,\xa0{tex}x = \\frac{5}{3}{/tex} or\xa0x = 7