Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7301.

(1/tana+cota)(1/1+sina)+(1/1-sina) =2sec2a

Answer»
7302.

what is the HCF of two consecutive even numbers

Answer» HCF of two consecutve even nos is always 2for exampleHCF of 2 and 4 is = 2HCF of 22 and 24 is = 2 and so on\xa0
2
7303.

Solve for x if (under root 2x+9)+x=13

Answer» 8 and 20
7304.

Find four no. In AP whose sum is 28 and sum of square is 216 ? With solution

Answer» Let the required number be (a - 3d), (a - d), (a + d) and (a + 3d)Sum of these numbers = (a - 3d) + (a - d)+ (a + d) + (a + 3d)According to the question, sum of the numbers=28{tex}\\therefore{/tex}4a = 28\xa0{tex}\\Rightarrow{/tex}\xa0a = 7Sum of the squares of these numbers=(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=4(a2+5d{tex}^2{/tex})Now, sum of the squares of numbers=216{tex}\\therefore{/tex}4(a2+5d2)=216{tex}\\Rightarrow{/tex}a2+5d2=54 [{tex}\\because {/tex}a=7]{tex}\\Rightarrow{/tex}5d2= 54-49{tex}\\Rightarrow{/tex}5d2=5{tex}\\Rightarrow{/tex}d2=1{tex}\\Rightarrow{/tex}d={tex} \\pm {/tex}1Hence, the required numbers (4, 6, 8, 10).
7305.

The value of 2x if the mean of x,x+2,x+7, x+11 and 2x is 16

Answer» 10
value of 2x=20
10
7306.

In triangle ABC AB=√3 AC = 12 BC =6 find angle b

Answer»
7307.

Find zeroes of v²+4√3v-15Also verify relationship between the zeroes and the coefficient

Answer» The given quadratic polynomial is: v2\xa0+ 4{tex}\\sqrt 3{/tex}v - 15By factorizing it we have v2\xa0+ 4{tex}\\sqrt 3{/tex}v - 15 = v2\xa0+ 5{tex}\\sqrt 3{/tex}v -\xa0{tex}\\sqrt 3{/tex}v - 15=\xa0v(v\xa0+ 5{tex}\\sqrt 3{/tex})\xa0-\xa0{tex}\\sqrt 3{/tex}(v +\xa05{tex}\\sqrt 3{/tex})\xa0= (v -\xa0{tex}\\sqrt 3{/tex})(v +\xa05{tex}\\sqrt 3{/tex})For zeroes, put the factors equal to zero i.e.,\xa0(v -\xa0{tex}\\sqrt 3{/tex})(v +\xa05{tex}\\sqrt 3{/tex})\xa0= 0{tex}\\Rightarrow v = \\sqrt { 3 } , - 5 \\sqrt { 3 }{/tex}\xa0are zeroes of the polynomial.Verification:\xa0In the given polynomial a = 1, b = 4{tex}\\sqrt 3{/tex}\xa0and c = - 15Now Sum of the zeroes =\xa0{tex}\\sqrt { 3 } + ( - 5 \\sqrt { 3 } ) = - 4 \\sqrt { 3 }{/tex}Also sum of zeroes =\xa0{tex}\\frac { - b } { a }{/tex},\xa0{tex}\\frac { - b } { a } = \\frac { - 4 \\sqrt { 3 } } { a } = - 4 \\sqrt { 3 }{/tex}And product of zeroes =\xa0{tex}\\sqrt { 3 } \\times - 5 \\sqrt { 3 }{/tex}= -15Also,\xa0product of zeroes =\xa0{tex}\\frac { c } { a } = \\frac { - 15 } { 1 } = - 15{/tex}
7308.

Sam

Answer»
7309.

How to learn trignometry values

Answer» Sorry bcoz it will take time ????
7310.

(X+2)(3x_5)=

Answer» (x+2)(3x-5)=3x^2-5x+6x-10=3x^2-x-10=3x^2-6x+5x-10=3x(x-2)+5(x-2)=(3x+5)(x-2). ==x=-5/3 or 2
7311.

Findthe value of at x+y,if 3x-xy=5 and 3y-2x

Answer»
7312.

Are two triangles with equal corresponding sides always similar?

Answer» yestwo triangles are similar if they have same shape but not necessary same size, one may be bigger than the other but of same shapetriangles are similar if\xa0AAA (Angle , Angle , Aangle) If all three pairs of corresponding angles are the sameSSS (Side , Side , Side) if all three pairs of corresponding sides are in the same proportionSAS (Side , Angle, Side) if two pairs of sides are in the same proportion and included angle equal
Ya
7313.

The HCF of two number is 23 and their LCM is 1449 . If one of the number is 161 , find the other

Answer» Let the two numbers be a and bHCF = 23LCM = 1449a = 161We have to find b.HCF(a,b)xLCM(a,b) = axb∴23x1449 = 161x b∴b = 207Thus, the other number is 207.
let the numbers = 161 , aproduct of two nos = hcf x lcm161 x a = hcf x lcm\xa0 a = 23 x 1449 /161 = 1449/7 = 207
7314.

2÷10=2

Answer»
7315.

Find the number of terms in the following (x+y)+(x-y)+(x-3y)+...........=22(-20)

Answer»
7316.

Is in 2018 all questions comes from ncert

Answer» Yes most but not all?
7317.

I want circle lesson 10.2 9sum

Answer»
7318.

hallo

Answer»
7319.

If 3 tanx =4 then find the value of sinx +cos x

Answer» Tanx=4/3 now hypotenuse becomes 5 therefore sinx4/5 and coax becomes 3/5 adding them we get 7/5
7320.

if the ratio of the sum of n terms of AP\'s is (7n+1):(4n+27),then find the ratio of their mth term

Answer» Let a, and A be the first terms and d and D be the common difference of two A.PsThen, according to the question,{tex}\\frac { S _ { n } } { S _ { n } ^ { \\prime } } = \\frac { \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \\frac { n } { 2 } [ 2 A + ( n - 1 ) D ] } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,\xa0{tex}\\frac { 2 a + ( n - 1 ) d } { 2 A + ( n - 1 ) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,{tex}\\frac { a + \\left( \\frac { n - 1 } { 2 } \\right) d } { A + \\left( \\frac { n - 1 } { 2 } \\right) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}Putting,\xa0{tex}\\frac { n - 1 } { 2 } = m - 1{/tex}{tex}n-1 = 2m - 2{/tex}{tex}n= 2m - 2 + 1{/tex}or, {tex}n = 2m - 1{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 7 ( 2 m - 1 ) + 1 } { 4 ( 2 m - 1 ) + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 7 + 1 } { 8 m - 4 + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}Hence,\xa0{tex}\\frac { a _ { m } } { A _ { m } } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}
7321.

The radius of a circle is increase twice then its perimeter is increase

Answer» Why no Yes perimeter get doubledIf radius is r then perimeter of circle(p) = 2πr And if radius(r) increased twise thenNew radius(R) = 2(r)New perimeter of circle(P)= 2πR = 2π(2r) = 4πr =2(2πr)And the 2πr is equal to the old perimeter of circle(p) So new perimeter of circle = 2pSo new perimeter of circle is double if we increase the radius twise
No
7322.

19 ,21,23 find commom difference

Answer» It is an A.P. so common difference isT2-T1=dd=21-19d=2
7323.

What is the common difference of an AP in which a(18)-a(13)=25?

Answer» let first term of AP is a and the common difference is d.\xa0We knowan\xa0= a + (n-1)dSo,\xa0{tex}a_{18} - a_{13} = 25 \\\\=> a+ (18-1)d - a - (13-1)d=25\\\\=> 17d -12d = 25 \\\\=> 5d = 25 \\\\=> d = 25\\div 5 = 5{/tex}
7324.

What is the formula to find ui,xi,di,cf

Answer» ui=x-A/h , do=xi-A
7325.

Can we use set square in construction in board exam

Answer» No you can not use\xa0
7326.

Prove pi is an irrational number

Answer»
7327.

The fraction 2(√2+√6)/3(√2+√√3)is equal to

Answer»
7328.

Hcf of 210,270,360

Answer»
7329.

Hcf of 210,280,360

Answer»
7330.

Find the sum of the following AP 1/10, 1/2 , 1/10,....,to 11 term

Answer»
7331.

Two cubes of sides 4cm are joined and to ends. Find the surface area of cuboid

Answer» 160sq units
Cxjc
7332.

Introduction of AP

Answer»
7333.

sec6a-tan6a=1+3tan²a *sec²a

Answer»
7334.

cosec alpha =√2. cot beta= 1find sin(alpha+beta)

Answer»
7335.

Prove √3 is irrarional

Answer» Let us assume that 3 is rational.That is, we can find integers a and b (≠0) such that\xa0a and b are co-prime{tex}\\style{font-family:Arial}{\\begin{array}{l}\\sqrt3=\\frac ab\\\\b\\sqrt3=a\\\\on\\;squaring\\;both\\;sides\\;we\\;get\\\\3b^2=a^2\\end{array}}{/tex}Therefore, a2 is divisible by 3,\xa0it follows that a is also divisible by 3.So, we can write a = 3c for some integer c.Substituting for a, we get 3b2 = 9c2, that is, b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 3c2This means that b2 is divisible by 3, and so b is also divisible by 3\xa0Therefore, a and b have at least 3 as a common factor.But this contradicts the fact that a and b are co-prime.This contradiction has arisen because of our incorrect assumption that 3 is rational.So, we conclude that 3 is irrational.
7336.

Proof completing square method lesson quadratic equation?

Answer»
7337.

If n=2³*3

Answer»
7338.

Exercise 7.1 ka 1 question

Answer»
7339.

Is there easy methods to solve trigonometric equations?

Answer» yes!!u can do by transforming whole equation in sin and cos
7340.

Logical questions I

Answer»
7341.

Chapter 2 Ex 2.2 questions 1

Answer»
7342.

Draw a pair of tangents of radius 5 cm which are inclined to each other at an angle of 45

Answer» Follow the given steps in order to construct the tangents.Step 1 : Draw a circle of radius 5\xa0cm and centre O.Step 2 : Take a point A on the circle. Join OA.Step 3 : Draw a perpendicular to OA at A.Step 4 : Draw a radius OB, making an angle of 135° (180° – 45°) with OA.Step 5 : Draw a perpendicular to OB at point B. Let these perpendiculars intersect at P.Here, PA and PB are the required tangents inclined at angle of 45°.
7343.

How to make the equations in word problems in quadratic equations?

Answer»
7344.

Find the area of rhombus if its vertices are (3,0),(4,5),(-1,4)and(-2,-1)taken in order.

Answer» Let A (3, 0), B (4, 5), C (-1, 4) and D (-2, -1){tex}AC = \\sqrt {{{( - 1 - 3)}^2} + {{(4 - 0)}^2}} = 4\\sqrt 2 {/tex}{tex}BD = \\sqrt {{{( - 2 - 4)}^2} + {{( - 1 - 5)}^2}} = \\sqrt {36 + 36} = 6\\sqrt 2 {/tex}Area of rhombus = {tex}\\frac{1}{2}{d_1} \\times {d_2}{/tex}{tex} = \\frac{1}{2}AC \\times BD{/tex}{tex} = \\frac{1}{2} \\times 4\\sqrt 2 \\times 6\\sqrt 2 = 24{/tex} Sq. unit.
7345.

If root3sintheta-costheta=0

Answer» {tex}\\sqrt 3 \\sin \\theta - \\cos \\theta = 0 \\\\=> \\sqrt 3 \\sin \\theta = \\cos \\theta \\\\ => \\tan \\theta = {1\\over \\sqrt 3} \\\\=> \\tan \\theta = \\tan 30^o \\\\=> \\theta = 30^o{/tex}
7346.

√2+√3 is irrational

Answer»
7347.

Sinα-2sin3α\\2cos3α-cosα=tanα

Answer»
7348.

Find the value of K if one of the root of quadratic eqn Kx2-14x+8=0 is six times to the other?

Answer» Kx2\xa0- 14x + 8 = 0\xa0On Comparing with standard form of polynomial, we get a = k, b = -14 and c = 8\xa0let one root =\xa0{tex}\\alpha {/tex}then another root =\xa0{tex}6\\alpha {/tex}We know,Sum of roots =\xa0{tex}{-b\\over a}{/tex}=>\xa0{tex}\\alpha + 6\\alpha = {14\\over K} \\\\=> 7\\alpha = {14\\over K}\\\\=> \\alpha = {2\\over K} \\ ... (i){/tex}Also,\xa0Product of roots =\xa0{tex}c\\over a{/tex}{tex}\\alpha \\times 6\\alpha = {8\\over K}\\\\6\\alpha ^2 = {8\\over K}{/tex}{tex}6\\times ({2\\over K})^2= {8\\over K} \\ using \\ (i) \\\\=> {24\\over K^2} = {8\\over K} \\\\=> K = 3 {/tex}
7349.

What is formula of Ap

Answer» a+(n-1)d
a+(n-1)d where a is first term d is common difference
7350.

what is corresponding angle

Answer» Corresponding angles are\xa0the angles which occupy the same relative position at each intersection where a straight line crosses two others. If the two lines are parallel, the corresponding angles are equal.