Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 7351. |
Cosec31-sec59 |
| Answer» Cosec (90-59)= sec59 [ cosec90- A = sec A]Sec59 - sec 59=0 | |
| 7352. |
Cos (90-theata)× cos theata ÷ tan theata + cos²( 90- theata)= 1 |
| Answer» Cos(90-theata)=sin theataTan theata =sin theata /cos theata Substitute Sin theata.cos that\'s /sin theata /cos theata +sin²theatacos²theata+sin²theata1 | |
| 7353. |
In what ratio is the line segment joining the points P(-2,-3) and Q(3,7)divided by the y-axis? |
| Answer» Let A (-2, -3) and B (3, 7)P (0, y) and ratio be K : 1Coordinate of P are {tex}\\left( {\\frac{{3k - 2}}{{k + 1}},\\frac{{7k - 3}}{{k + 1}}} \\right){/tex}{tex}\\frac{{3k - 2}}{{k + 1}} = 0{/tex}{tex} \\Rightarrow k = \\frac{2}{3}{/tex}\xa0or 2 : 3 | |
| 7354. |
Express all other trigonometric ratios of tan A |
| Answer» | |
| 7355. |
Sin A+sinB |
|
Answer» Sorry by mistake I launched this answer the correct answer is Sin A + Sin B = Sin (A +B) = Sin A Cos B +Sin B + Cos A Sin A + Sin B = Sin(A+B) = SinA + Cos B |
|
| 7356. |
What is co-prime numbers? |
| Answer» Those numbers which have no common factor other than 1is called co-prime numbers. | |
| 7357. |
(1+tan×tan A)+(1+1/tan×tan A)=1/sin×sinA-sin×sin×sin×sinA |
| Answer» LHS{tex} = \\left( {1 + {{\\tan }^2}A} \\right) + \\left( {1 + \\frac{1}{{{{\\tan }^2}A}}} \\right){/tex}{tex} = \\left( {1 + {{\\tan }^2}A} \\right) + \\frac{{({{\\tan }^2}A + 1)}}{{{{\\tan }^2}A}}{/tex}{tex} = {\\sec ^2}A + \\frac{{{{\\sec }^2}A}}{{{{\\tan }^2}A}}{/tex}\xa0{tex}\\left[ {\\because 1 + {{\\tan }^2}A = {{\\sec }^2}A} \\right]{/tex}{tex} = \\frac{1}{{{{\\cos }^2}A}} + \\frac{{\\frac{1}{{{{\\cos }^2}A}}}}{{\\frac{{{{\\sin }^2}A}}{{{{\\cos }^2}A}}}}{/tex}\xa0{tex}\\left[ \\begin{gathered} \\because {\\sec ^2}A = \\frac{1}{{{{\\cos }^2}A}} \\hfill \\\\ {\\tan ^2}A = \\frac{{{{\\sin }^2}A}}{{{{\\cos }^2}A}} \\hfill \\\\ \\end{gathered} \\right]{/tex}{tex} = \\frac{1}{{{{\\cos }^2}A}} + \\frac{1}{{{{\\cos }^2}A}} \\times \\frac{{{{\\cos }^2}A}}{{{{\\sin }^2}A}}{/tex}{tex} = \\frac{1}{{{{\\cos }^2}A}} + \\frac{1}{{{{\\sin }^2}A}}{/tex}{tex} = \\frac{{{{\\sin }^2}A + {{\\cos }^2}A}}{{{{\\cos }^2}A{{\\sin }^2}A}}{/tex}{tex} = \\frac{1}{{{{\\cos }^2}A{{\\sin }^2}A}}{/tex}\xa0{tex}\\left[ {\\because {{\\sin }^2}A + {{\\cos }^2}A = 1} \\right]{/tex}{tex} = \\frac{1}{{(1 - {{\\sin }^2}A){{\\sin }^2}A}}{/tex}\xa0{tex}\\left[ {\\because {{\\cos }^2}A = 1 - {{\\sin }^2}A} \\right]{/tex}{tex} = \\frac{1}{{{{\\sin }^2}A - {{\\sin }^4}A}}{/tex}= RHSHence proved. | |
| 7358. |
Can you please send me the formulas of chapter trigonometry |
| Answer» You can check revision notes for formulae :\xa0https://mycbseguide.com/cbse-revision-notes.html | |
| 7359. |
If tanA=√2-1 show that sinAcosA=√2\\4 |
| Answer» | |
| 7360. |
Prove that /2+/3 is an irrational number |
| Answer» Let us assume that\xa0{tex}\\sqrt 2 + \\sqrt 3{/tex}\xa0is a rational numberLet {tex}\\sqrt2+\\sqrt3=\\frac{\\mathrm a}{\\mathrm b}{/tex} Where a and b are co-prime positive integersOn squaring both sides, we get{tex}(\\sqrt2+\\sqrt3)^2=\\frac{\\mathrm a^2}{\\mathrm b^2}{/tex}{tex}2+3+2\\sqrt6=\\frac{\\mathrm a^2}{\\mathrm b^2}{/tex}{tex}5 + 2\\sqrt 6 =\\frac{a^2}{b^2}{/tex}\xa0{tex}2\\sqrt6=\\frac{\\mathrm a^2}{\\mathrm b^2}-5{/tex}{tex}2\\sqrt6=\\frac{\\mathrm a^2-5\\mathrm b^2}{\\mathrm b^2}{/tex}{tex}\\sqrt6=\\frac{\\mathrm a^2-5\\mathrm b^2}{2\\mathrm b^2}{/tex}Now\xa0{tex}\\frac{\\mathrm a^2-5\\mathrm b^2}{2\\mathrm b^2}{/tex}\xa0is a rational number.This shows that\xa0{tex}\\sqrt 6{/tex}\xa0is a rational number.But this contradicts the fact that\xa0{tex}\\sqrt 6{/tex}\xa0is an irrational number.This contradiction has raised because we assume that\xa0{tex}\\left( {\\sqrt 2 + \\sqrt 3 } \\right){/tex}\xa0is a rational number.Hence, our assumption is wrong and\xa0{tex}\\left( {\\sqrt 2 + \\sqrt 3 } \\right){/tex}\xa0is an irrational number. | |
| 7361. |
Find the value of x when the value of 2x is 98. |
|
Answer» Yes it is 49 Ya ya it\'s 49. Ya you are right if 2x=98then, x= 98/2i.e x=49 49 49 |
|
| 7362. |
under root 5 is irrational number |
|
Answer» Yes it is an irrational no. In exams u have to prove this too You have to prove it also in board exams . Koi shak |
|
| 7363. |
√2+√2+√2+√2=? |
|
Answer» Ya the value of root 2 is 1.41 so there was 4 root2 so multiply 4 by 1.41 then answer is 5.656. Ok! √2+√2+√2+√2= 4√2=4×1.41(√2= 1.414)=5.656This is the answer |
|
| 7364. |
Please easy way to learning that question |
| Answer» | |
| 7365. |
Middle term spliting |
| Answer» | |
| 7366. |
Plz! Tell me easy way to learn trigonometry formulas |
|
Answer» sin 0= 0/4 rootsin 30= 1/4rootsin 45= 2/4rootsin 60= 3/4rootsin 90= 4/4root Thre was a another way that the sin,theta equal to perpendicular upon hypotenuse..In all the fomulas you know may be so the trick is PBP HHB ,first there is p upon h means perpendicular upon hypotenuse.Second b upon h base upon hypotenuse.Third p upon b perpendicular upon base .In fourth you have to take it inversely h upon p hypotenuse upon perpendicular. like you can do h upon b and p upon b.oo i forgot tell that from upper side you take that sin cos tan pbp k upar likho. And then hhb k niche likho cosec sec cot.to phir dekho upar likha sin to sin ka ho gya p upon h phor cos uska b upon h phir likha p upon b to uska tan phir niche aao to h upon p uske niche likha tha cosec phir h upon b sec phir b upon p to uska cot ok its too much long ☺☺☺☺but read it hole. Make some rhymes on it Or do like this that see t comes after s then u can easily remember the formula of sec and tan queta |
|
| 7367. |
Which angle make pie |
| Answer» | |
| 7368. |
A number |
|
Answer» 11 1 |
|
| 7369. |
How many three digit numbers divisible by 3? |
| Answer» Infinite | |
| 7370. |
What is a frustom of a cone |
|
Answer» Not from upper part but down part is the area where it is cut from and it somewhat looks like a bucket If cut the part of a cone from upper side then it becomes the frustum. |
|
| 7371. |
Find an a.p for these 3,5,7,9 |
| Answer» | |
| 7372. |
If the sum of first nth termof an A.P isa{n}^{2}+bn find its common difference\u200b |
| Answer» | |
| 7373. |
Evaluate 2% Of 2% |
|
Answer» 0.4 4 |
|
| 7374. |
cos theta - sin theta + 1 / cos theta + sin theta -1 |
| Answer» | |
| 7375. |
What is relative prime |
| Answer» Two numbers are "relatively prime" when they have no common factors other than 1.In other words you cannot evenly divide both by some common value.Examples: 7 and 20 are relatively prime (no common factor)6 and 20 are not relatively prime because you can evenly divide both by 2 (2 is a common factor). | |
| 7376. |
Find hcf of 3³×5³ |
| Answer» 1 | |
| 7377. |
2 Ka power 100 |
| Answer» {tex}{\\left( {{2^{10}}} \\right)^{10}} = {\\left( {1024} \\right)^{10}}{/tex} | |
| 7378. |
11+11=412+12=913+13=? Give answer |
|
Answer» Rahul u are wrong dear. 15 |
|
| 7379. |
5:7= |
| Answer» | |
| 7380. |
One hectare=? |
| Answer» | |
| 7381. |
_tanA_____ =_______tanA-1______1+cotA 2-consec square A |
| Answer» | |
| 7382. |
ए प्लस बी का होल क्यूब |
|
Answer» a^3 +b^3 +3ab(a+b) ?on Google |
|
| 7383. |
Is 5 is a rational no. |
|
Answer» Yes Yes 5/1 |
|
| 7384. |
Kya board ka paper NCERT say ayega |
| Answer» | |
| 7385. |
Sir class ten final examination ma mcq aiga kya |
| Answer» | |
| 7386. |
Hello sir |
| Answer» | |
| 7387. |
How is quaratic equation formed if we have given sum of zeros and products of zeros? |
| Answer» k{x2-(alpha +beta )x +alpha beta} | |
| 7388. |
Cos45/sec30+cosec30 |
| Answer» | |
| 7389. |
Is the final exam is hard? |
| Answer» | |
| 7390. |
Application of LCM and HCF |
| Answer» | |
| 7391. |
The HCF of two numbers in 27 and LCM is 162.If one of the number is 81,Find the other |
| Answer» 54 | |
| 7392. |
If a and b are |
| Answer» To b aur c to jaroor honge d aur e bh.... | |
| 7393. |
5x+3y=02x+4y=5 |
| Answer» | |
| 7394. |
1/v + 1/u =1/f is the formula of |
|
Answer» Here is the right answer Thats Mirror Formula. |
|
| 7395. |
If alpha and beta are the zeroes of polynomial x2-5x+k and a-p =1 find the value of k |
| Answer» 6 | |
| 7396. |
If the sum of first \'m\' terms of an AP is n,then show that the sum of its first (m+n)=-(m+n) |
| Answer» Let a be the first term and d be the common difference of the given AP. Then,Sm = n\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{m}{2}{/tex}[2a + (m-1)d] = n{tex}\\Rightarrow{/tex}\xa02am + m(m- 1)d - 2n\xa0...... (i)And, Sn\xa0= m\xa0{tex}\\Rightarrow{/tex}{tex}\\frac{n}{2}{/tex}[2a + (n - 1)d] = m{tex}\\Rightarrow{/tex}\xa02an + n(n - 1)d = 2m ...... (ii)On subtracting (ii) from (i), we get2a(m-n) + [(m2 - n2) - (m - n)]d = 2(n - m){tex}\\Rightarrow{/tex}\xa0(m - n)[2a + (m + n - 1)d] = 2(n - m){tex}\\Rightarrow{/tex}\xa02a + (m + n- 1)d = -2 ..... (iii)Sum of the first (m + n) terms of the given AP=\xa0{tex}\\frac{{(m + n)}}{2}{/tex}{tex}\\cdot{/tex}{2a + (m + n - 1)d}{tex}= \\frac { ( m + n ) } { 2 } \\cdot ( - 2 ) = - ( m + n ){/tex}\xa0[using (iii)].Hence, the sum of first (m + n) terms of the given AP is -(m + n). | |
| 7397. |
If m times the nth term of an AP is same as n times mth term , find the (m+n)th term |
| Answer» Let a be the first term and d be the common difference of the given AP. Then,Sm = n\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{m}{2}{/tex}[2a + (m-1)d] = n{tex}\\Rightarrow{/tex}\xa02am + m(m- 1)d - 2n\xa0...... (i)And, Sn\xa0= m\xa0{tex}\\Rightarrow{/tex}{tex}\\frac{n}{2}{/tex}[2a + (n - 1)d] = m{tex}\\Rightarrow{/tex}\xa02an + n(n - 1)d = 2m ...... (ii)On subtracting (ii) from (i), we get2a(m-n) + [(m2 - n2) - (m - n)]d = 2(n - m){tex}\\Rightarrow{/tex}\xa0(m - n)[2a + (m + n - 1)d] = 2(n - m){tex}\\Rightarrow{/tex}\xa02a + (m + n- 1)d = -2 ..... (iii)Sum of the first (m + n) terms of the given AP=\xa0{tex}\\frac{{(m + n)}}{2}{/tex}{tex}\\cdot{/tex}{2a + (m + n - 1)d}{tex}= \\frac { ( m + n ) } { 2 } \\cdot ( - 2 ) = - ( m + n ){/tex}\xa0[using (iii)].Hence, the sum of first (m + n) terms of the given AP is -(m + n). | |
| 7398. |
prove that 2root3÷5 is irrational |
| Answer» Let2√3/5 be rational no.then 2√3/5 is in form of a/bWhere, a & b are co prime2√3/5=a/b√3=5a/2bHere,5a/2b is rationalBut,√3is irrationalThis is contradictioHence,2√3/5 is irrational | |
| 7399. |
Can two number have 18as their HCF and 380 as their LCM ? Give reason . |
| Answer» NO because hcf doesnot completely divides lcm | |
| 7400. |
In triangle POR XY equal QR if XY=1/3QR than find PR:PX. |
| Answer» | |