Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

7401.

4-1+1+4+6

Answer» 8
14
7402.

What is euclid geometry

Answer» Geometry dealing with lines
7403.

56+65

Answer» 121
121
7404.

tanA/1-cotA+cotA/1-tanA

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
7405.

If the numbers (x-2), (4x-1), (5x-2) are in Ap fine the vqlu3 of x

Answer» Let a=x-2 , b=4x-1, c=5x-2a+c/2 =b (x-2)+(5x-2)/2 =4x-16x-4=2(4x-1)6x-1=8x-28x-6x= -1+2 2x=1x=1/2
7406.

ashwani

Answer» Illiana
S. M.
7407.

trigomontry

Answer» Circle
7408.

The difference between two numbers is 9 and they are in the ratio 4:8. Find the numbers.

Answer»
7409.

The first three terms of an AP are respectively (3y-1),(3y+5) and (5y+1) ,find the value of y

Answer» Y=5
7410.

456= 10\\4

Answer»
7411.

100x2-81 write zeroes

Answer»
7412.

(a+b)x(a-b)=?

Answer» asquare- bsquare
(a2-b2)
A square + b square
7413.

If one zero of polynomial 2x3+x2-7x-6is2 find all zeroes

Answer»
7414.

If 24 is 2/3 of 3/4 of a number then what will be 1/4 of that number

Answer» let the number = x24=2/3 of 3/4 x24=1/2 xx=48now 1/4 of 48=1/4x48=12
12
7415.

View of exam

Answer»
7416.

Find the LCM of small prime number

Answer»
7417.

Write central tendencies

Answer»
7418.

Sum of three numbers is 12 sum of their cubes is 288 find the numbers

Answer» Let the three numbers in A.P. be {tex}a - d, a, a + d{/tex}.{tex}3a = 12 {/tex}or, {tex}a = 4{/tex}.Also, (4 - d)3 + 43 + (4 + d)3\xa0= 288or, 64 - 48d + 12d2- d3 + 64 + 64 + 48d + 12d2 + d3 = 288or, 24d2 + 192 = 288or, 24d2 = 288 - 192or, 24d2 = 96or, d2 = 96/24or, d2 = 4d ={tex}\\pm{/tex}2The numbers are 2,4, 6, or 6,4,2.
7419.

The value of (sin 30+cos30)-(sin60+cos60)is

Answer» ०
If cos A = 4/5, then tan A = ?
The value of tan 60°/cot 30° is equal to:2 points
= Sin30 + sin (90-30) - sin60 - sin (90 - 60 )= sin 30 + sin 60 - sin 60 - sin 30 =0
7420.

2x*34

Answer» Class x me रत्वतचकिरचततसलवसहकतकok hi
68x
7421.

What is frustum ? Give its formula..

Answer» FORMULA:TSA of a frustum of a cone = πl(r1 + r2) + πr12 + πr22Volume of the frustum of a cone = (1/3) πh (r12 + r22 + r1 r2)
Cut a right circular cone with a plane parallel to the base of the cone, then the solid shape between the plane and the base of the cone is called the frustum of a cone.
7422.

if √3sinθ find the value ofsinθ.tanθ./sinθ+cosθ

Answer»
7423.

Pls everyone tell me about ur daily routine

Answer»
7424.

Find value of k 3x+4y+2=0,9x+12y+k=0 represents co-incident lines

Answer»
7425.

what is formula for hemispheres

Answer» TSA =3πrsq. CSA=2πrsq. Volume=2/3πrsq.
7426.

Can (x-7) be the remainder on division of a polynomial p(x) by (7x + 2)? Justify

Answer» No
7427.

ABCD is a trapezium in which AB||DC and AB||EF,then prove that AE/AD=BF/BC.please give answer fast

Answer» Give proper answer
By BPT
7428.

x²+x–²

Answer»
7429.

Find the value of a if the point, (3,5)and (7,1)are equidistant from the point (a, 0)?

Answer»
7430.

Find the centre of the circle passing through the points (6,-6);(3,-7); and (3,3)

Answer» Let\xa0A → (6, –6), B\xa0→ (3, –7) and C\xa0→ (3, 3).Let the centre of the circle be I(x, y)Then, IA = IB = IC [By definition of a circle]{tex}\\Rightarrow{/tex} IA2 = IB2 = IC2{tex}\\Rightarrow{/tex} (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2Taking first two, we get(x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2{tex}\\Rightarrow{/tex} x2 - 12x + 36 + y2 + 12y + 36 = x2 - 6x + 9 + y2 + 14y + 49{tex}\\Rightarrow{/tex} 6x + 2y = 14{tex}\\Rightarrow{/tex} 3x + y = 7 ......(1) ....[Dividing throughout by 2]Taking last two, we get(x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2{tex}\\Rightarrow{/tex} (y + 7)2 = (y - 3)2{tex}\\Rightarrow{/tex} (y + 7) = {tex}\\pm{/tex}(y-3)taking +e sign, we gety + 7 = y - 3{tex}\\Rightarrow{/tex} 7 = -3which is impossibleTaking -ve sign, we gety + 7 = -(y - 3){tex}\\Rightarrow{/tex} y + 7 = -y + 3{tex}\\Rightarrow{/tex} 2y = -4{tex}\\Rightarrow y = \\frac{{ - 4}}{2} = - 2{/tex}Putting y = -2 in equation (1), we get{tex}\\Rightarrow{/tex} 3x - 2 = 7{tex}\\Rightarrow{/tex} 3x = 9{tex}\\Rightarrow{/tex} x = 3Thus, I {tex}\\rightarrow{/tex} (3, -2)Hence, the centre of the circle is (3, -2).
7431.

How many 0zero in million

Answer» 6
7432.

Find mean of following data: 10,15,20,16,12,17,30,10,11,13

Answer»
7433.

Artaamatic progression

Answer»
7434.

What is trigonometry actually means

Answer» Tri- three; gono-angle; metry- measurement, trigonometry simply means three angle measurement.
7435.

Show that only one of the numbers n,n+2,n+4 is divisible by 3

Answer» Let the number be (3q + r){tex}n = 3 q + r \\quad 0 \\leq r < 3{/tex}{tex}\\text { or } 3 q , 3 q + 1,3 q + 2{/tex}{tex}\\text { If } n = 3 q \\text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}{tex}3 q \\text { is divisible by } 3{/tex}.{tex}\\text { If } n = 3 q + 1 \\text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}{tex}( 3 q + 3 ) \\text { is divisible by } 3{/tex}.{tex}\\text { If } n = 3 q + 2 \\text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}{tex}( 3 q + 6 ) \\text { is divisible by } 3{/tex}.{tex}\\therefore \\text { out of } n , ( n + 2 ) \\text { and } ( n + 4 ) \\text { only one is divisible by } 3{/tex}.
7436.

Find the next term of AP : root 7, root 28 ,root 63 ,..........

Answer» Here,{tex}a = \\sqrt { 7 } , a + d = \\sqrt { 28 }{/tex}{tex}\\therefore \\quad d = \\sqrt { 28 } - \\sqrt { 7 } {/tex}{tex}= 2 \\sqrt { 7 } - \\sqrt { 7 }{/tex}{tex}= \\sqrt { 7 }{/tex}or, Next term =\xa0{tex}\\sqrt { 63 } + \\sqrt { 7 }{/tex}or, = {tex}\\sqrt { 9\\times7 } + \\sqrt { 7 }{/tex}or,\xa0{tex}= 3 \\sqrt { 7 } + \\sqrt { 7 } {/tex}or, {tex}= 4 \\sqrt { 7 }{/tex}or,\xa0{tex}= \\sqrt { 7 \\times 16 }{/tex}{tex}= \\sqrt { 112 }{/tex}So, next term is {tex}\\sqrt { 112 }{/tex}.
7437.

How to understand the concepts of Algebra?

Answer»
7438.

speed questions

Answer»
7439.

In ? PQR Q=90degree,qs perpendicular to or prove that pq square/pr square=rs/ps?

Answer»
7440.

Find the greatest number of 5 digit that is 24 15 and 36

Answer» The greater number of 6 digits is 999999.LCM of 24, 15, and 36 is 360.{tex}999999 = 360 \\times 2777 + 279{/tex}Required number is = 999999 - 279 = 999720\xa0
7441.

98------------2×2•7×7Is it is terminating ir non terminating?

Answer» Yes of course
2.592592592 is terminating
7442.

Find the middle term of the AP 6, 13,20,.....216.

Answer» Here,a=6 & d= 7 by nth term=a+(n-1)d we know that 216 is 31th term therefore mid term will be 16 now we can easily calculate 16th term. 16th term=6+(16-1)716 term=111
7443.

express trigonometric ratio sinA in term of cotA

Answer» For sin A,By using identity {tex}cosec ^ { 2 } A - \\cot ^ { 2 } A = 1 \\Rightarrow \\cos e c ^ { 2 } A = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\frac { 1 } { \\sin ^ { 2 } A } = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\sin A = \\frac { 1 } { \\sqrt { 1 + \\cot ^ { 2 } A } }{/tex}
7444.

Sec theta minus one upon sec theta + 1 is equals to sin theta upon 1 + cos theta whole square

Answer»
7445.

The sum of two rationals is always rational

Answer»
7446.

If tan2 A is equal to 3 find A. Plz...

Answer»
7447.

Xsquare(root2+1)x+rootSolve by completing the square method

Answer»
7448.

Find the value of y for which the distance between the point p(2,-3) and q(10,y) is 10 units

Answer» y=-9,3
7449.

5 multiple 8

Answer»
7450.

Mensurationof

Answer»