Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10501.

Yaha Tak ki apna gender change kr diya.....boys girls k naam see id bana the hai...

Answer» Kabse bol rha Mera answer do meine churaya hai kya tere answer ko
To Tera kya question hai bolna
Nai see nai gaali sikho vo bhi free mein
Bahut see idhat fake I\'d bani hui hai......aur galiyon ka to bhandar hai
Mere qstn ka ans kro ?
It\'s true
Dimaag phir gaya hai kya ?virus faila rahi ho yaha
Type krte time to galia tapkti hai
Oh
10502.

roman rumenal

Answer» Nhi banni m hu swaggy
Harshit हो tum
10503.

SinA/cosA+cosecA=2+sinA/cotA-cosecA

Answer» u have not sent answers
Slve lhs and rhs separately
10504.

1M

Answer» 100cm
10505.

Find the sum of first five multiples of 2

Answer» 30
Iska ans humne de diya to aage poochogi ki 2+2 kitne hote hain
10506.

In the AP 2,x,26 find the value of x

Answer» x = 14
10507.

Find the positive root of under root 3x square +6=9

Answer» Ans is 5 baise me mathematics ke question ke ans nahi deta kunki inki koi seema nahi but tumhare question ans ish liye diya ki agar poori baat padi to kabhi bhi koi bhi koi ish type ka ker sakte ho sabse pehle hum under root hatane ke liye squaring kerte hainjisse underroot hat jaye phir solve khud se karsakte hain ok thank ku jagah mein jo likha hai usme kuch likh dena tumhari marzi
10508.

In your app the sample paper is for board?

Answer»
10509.

Give example of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm

Answer» \tdeg p(x) = deg q(x)\t{tex}p ( x ) = 2 x ^ { 2 } - 2 x + 14{/tex}\tg(x) = 2\tq(x) = x2 - x + 7\tr(x) = 0\tClearly, p(x) = q(x) {tex} \\times {/tex}\xa0g(x) + r(x)\tdeg q(x) = deg r(x)\t{tex}p ( x ) = x ^ { 3 } + x ^ { 2 } + x + 1{/tex}\t{tex}g ( x ) = x ^ { 2 } - 1{/tex}\tq(x) = x + 1\tr(x) = 2x + 2\tClearly,\xa0{tex}p ( x ) = q ( x ) \\times g ( x ) + r ( x ){/tex}\tdeg r(x) = 0\t{tex}p ( x ) = x ^ { 3 } + 2 x ^ { 2 } - x - 2{/tex}\t{tex}g ( x ) = x ^ { 2 } - 1{/tex}\tq(x) = x + 2\tr(x) = 4\tClearly,\xa0{tex}p ( x ) = q ( x ) \\times g ( x ) + r ( x ){/tex}
10510.

The sum of three consecutive terms of an Ap is 18 and their product is 192. Find the number

Answer»
10511.

3-2 is

Answer» 1
10512.

If sina + sin^2a + sin^3a = 1 then prove that cos^6a + 4cos^4a + 8cos^2a = 4

Answer» We have,sin{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}\xa0+ sin3{tex}\\theta{/tex}\xa0= 1{tex}\\Rightarrow{/tex}\xa0sin{tex}\\theta{/tex}\xa0+ sin3{tex}\\theta{/tex}\xa0= 1 - sin2{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0sin{tex}\\theta{/tex}\xa0(1 + sin2{tex}\\theta{/tex}) = cos2{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0sin2{tex}\\theta{/tex}\xa0(1 + sin2{tex}\\theta{/tex})2 = cos4{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0(1 - cos2{tex}\\theta{/tex}\xa0){\xa01 + (1 - cos2{tex}\\theta{/tex}\xa0) }2\xa0= cos4{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0(1 - cos2{tex}\\theta{/tex}) (2 - cos2{tex}\\theta{/tex})2 = cos4{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0(1 - cos2{tex}\\theta{/tex}) (4 - 4 cos2{tex}\\theta{/tex}\xa0+ cos4{tex}\\theta{/tex}) = cos4{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa04 - 4 cos2{tex}\\theta{/tex}\xa0+ cos4{tex}\\theta{/tex}\xa0- 4 cos2{tex}\\theta{/tex}\xa0+ 4 cos4{tex}\\theta{/tex}\xa0- cos6{tex}\\theta{/tex}\xa0= cos4{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0-cos6{tex}\\theta{/tex}\xa0+ 4 cos4{tex}\\theta{/tex}\xa0- 8cos2{tex}\\theta{/tex}\xa0+ 4 = 0\xa0{tex}\\Rightarrow{/tex}\xa0cos6{tex}\\theta{/tex}\xa0- 4cos4{tex}\\theta{/tex}\xa0+ 8cos2{tex}\\theta{/tex}\xa0= 4
10513.

Exercise 6.5 question number 15

Answer»
10514.

if sintheta + costheta +sin2theta + cos2 theta=1 then prove that tantheta +cottheta +1- sec2theta=1

Answer»
10515.

Why is 2 a prime number as well as even number

Answer» 2 Is a prime no. because it is divisible by 1 and itself and 2 is also an even no.
A prime number is such that it is divisible by only itself and one. So Two is a prime no. because it is divisible by only two and one. A no. which is divisible by two is also an even no. Two is the only no. that is both even and prime.
10516.

Prove that √3+√5 is an irrational number

Answer» Let the given no. be rational. So there exist co prime integers a and b such that. √3+√5=a/b S.B.S ( √3+√5)^2=a/bSolving this we get the answer
Yes
Let us assume that √2+√3 is a rational no.√3+√5=p/qP/q-√3=√5Squaring both sides(P/q-√3)2=(√5)2P2/q2-2√3p/q+3=5P2/q2-2√3p/q+3-5P2/q2-2=2√3p/qP2-2q2/q22p/q√3P2-2q2/2pq=√3.This contradicts the fact that √ 3 is a irrational no.So,aur assume was incorrect.Here ,√2+√3is irrational no.
10517.

Is 0 an even number?

Answer» Yes
0 is an even number .
10518.

Sin + cos

Answer» Sin²A + cos²A=1
10519.

5x-6y+8=07x+6y-9=0

Answer» X=1/12 andy=..........???????????
10520.

3x +2y = 52x _ 3y= 7

Answer» On a graph paper, draw a horizontal line X\'OX and a vertical line YOY\' as the x-axis and the y-axis respectively.Graph of 3x + 2y = 4{tex}3x + 2y = 4{/tex}{tex}\\Rightarrow{/tex}\xa0y ={tex}\\frac { 4 - 3 x } { 2 }{/tex}\xa0...... (i)Thus, we have the following table for\xa0{tex}3x + 2y = 4{/tex}\tx0{tex}2{/tex}{tex}-2{/tex}y2{tex}-1{/tex}{tex}5{/tex}\tNow, plot the points\xa0{tex} A (0, 2), B(2, -1) \\ and \\ C(-2, 5){/tex} on the graph paper.Join AB and BC to get the graph line ABC.Extend the graph line BC on both sidesThus, the line BC is the graph of the equation\xa0{tex}3x + 2y = 4.{/tex}Graph of 2x - 3y = 7{tex}2x - 3y = 7{/tex}{tex}\\Rightarrow y = \\frac { 2 x - 7 } { 3 }{/tex}\xa0.......(ii)\tx2-15y-1-31\tNow, plot the points\xa0{tex}P(-1,-3) \\ and \\ Q (5, 1){/tex} on the same graph paper.Join PB\xa0and QB\xa0to obtain the line PQ.Thus, the line PQ\xa0is the graph of\xa0{tex}2x - 3y = 7.{/tex}The two graph lines intersect at point\xa0{tex}B(2,-1).{/tex}{tex}\\therefore{/tex}\xa0{tex}x = 2, y = -1{/tex} is the solution of the given system of equations.
10521.

SecA+tanA=p find the value of cosec A

Answer» Given,{tex}sec\\ \\theta+ tan\\ \\theta = p{/tex} ...(i)Also, we know that,\xa0{tex}sec^2\xa0\\theta - tan^2 \\theta = 1{/tex}{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0- tan\xa0{tex}\\theta{/tex}) (sec\xa0{tex}\\theta{/tex}\xa0+ tan\xa0{tex}\\theta{/tex}) = 1 [{tex}\\because a^2-b^2=(a+b)(a-b){/tex}]{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex})p = 1 [using equation (i)]{tex}\\Rightarrow{/tex}\xa0sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1}{p}{/tex}\xa0...(ii)(i)+(ii), we get,{tex}sec\\theta + tan\\theta+ sec\\theta - tan\\theta = p+ \\frac{1}{p}{/tex}{tex}\\Rightarrow 2sec\\theta = \\frac{p^2+1}{p}{/tex}{tex}\\Rightarrow sec\\theta = \\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow \\frac{1}{cos\\theta} =\\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow cos\\theta =\\frac{2p}{p^2+1}{/tex}------(iii)Now, we know that,{tex}sin\\theta = \\sqrt( 1- cos^2\\theta) {/tex}put the value of\xa0{tex}cos\\theta{/tex}\xa0from eq. (iii), we get,{tex}sin\\theta = \\sqrt(1-(\\frac{2p}{p^2+1})^2){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(1-\\frac{4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2+1)^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1+2p^2-4p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{p^4+1-2p^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\sqrt(\\frac{(p^2-1)^2}{(p^2+1)^2}){/tex}{tex}\\Rightarrow sin\\theta = \\frac{p^2-1}{p^2+1}{/tex}{tex}cosec\\theta = \\frac{p^2+1}{p^2-1} [\\because cosec\\theta =\\frac{1}{sin\\theta}]{/tex}hence, {tex}cosec\\\xa0\\theta{/tex}\xa0{tex}=\\frac{1+p^{2}}{1-p^{2}}{/tex}
10522.

SecA+tanA=p

Answer»
10523.

State and prove bpt

Answer»
10524.

(a+b)%

Answer»
10525.

if 9th term of AP is zero ,prove that it\'s 29th term is double of its 19th term.

Answer» a9=a+8d=0 ............. ia29=a+28d..................iia19=a+18d..................iiifrom i and iia= - 8da29= - 8d + 28d a29 = 20d ..... ivfrom i and iiia19 = - 8d + 18d = 10d ... vthus a29 is double of a19 (20d is double of 10d) ...... proved
a9=0a + 8d = 0a= -8d ............... (I)Now, a29 = a + 28d = -8d + 28d = 20dAgain, a19= a + 18 d = -8d + 18d =10dHence, 29th term is double of its 19th term.
10526.

√6√6√6...find the value of this no.

Answer» 3
10527.

Alpha²/beta²+beta²/alpha²=p4/q4- 4q²/q +2

Answer»
10528.

Sin ² 25°+cos²25°

Answer» 1 =why bcoz sin²25 +cos²25=1
1
1
10529.

Kya class10 ka paper asan ayega

Answer» No if you work hard ,and think it is easy you will succeed ,or if not
Yes , After the commanding on NCERT
No , After the commanding on NCERT
I saw the sample paper according to it the difficulty level will be moderate.
10530.

If cosec theta =15÷7, and alpha+theta=900, find the value of sec and also of sec alpha .

Answer»
10531.

2x+5x

Answer» x(2+5) = 7x
7x
7x
10532.

In right angle triad ABC right angled atB if tanA=1 verify that 2sinA cosA=1

Answer» In {tex} \\triangle A B C{/tex},{tex}\\tan A = 1{/tex}{tex}\\Rightarrow \\quad \\frac { B C } { A C } = 1{/tex}{tex}\\Rightarrow {/tex}\xa0BC = x and\xa0AC = xUsing Pythagoras theorem,\xa0{tex}\\Rightarrow A B ^ { 2 } = A C ^ { 2 } + B C ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B ^ { 2 } = x ^ { 2 } + x ^ { 2 }{/tex}{tex}\\Rightarrow \\quad A B = \\sqrt { 2 } x{/tex}{tex}\\therefore \\quad \\sin A = \\frac { B C } { A B } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } \\text { and } \\cos A = \\frac { A C } { \\sqrt { 2 } x } = \\frac { x } { \\sqrt { 2 } x } = \\frac { 1 } { \\sqrt { 2 } } {/tex}2 sin A cos A\xa0{tex}= 2 \\times \\frac { 1 } { \\sqrt { 2 } } \\times \\frac { 1 } { \\sqrt { 2 } } = 1{/tex}
10533.

Explain why 132333435637 is a composite number

Answer» Thanq
Because it has more than one common factor
we have no. 132333435637is divided by 13so, can be written as 13*179495049 it shows that the no. has more than two factors which satisfy the composite no. property .So it is. compo. no.
10534.

I want to know the best site for sample papers.

Answer» cbseguide.com
10535.

State and prove pythagoras theorem .

Answer»
10536.

What is the formula of TSA of right circular cylinder

Answer» 2πr(r+h)
10537.

Formula of TSA of hemisphere

Answer» TSA of hemisphere = 3πr2
TSA of hemisphere= 3πr2
10538.

Square of any positive integer is 4m or 4m+1

Answer» let x be any possitive integer then by Euclid\'s Algorithm a = bq+r and a = x, b = 4we have x = 4q +r -------------------(1)where q is an integer >= 0 and 0 <= r <4since 0<=r<4 , r=0 ,1,2,3 ,\xa0from eqn (1) for r= 0 , x = 4q for r=1, x=4q+1 for r=2,x=4q+2therefore x is of th form 4q, 4q+1,4q+2now, x=4q=x2=16q2 ---------------------2x=4q+1=x2=16q2+8q+1------------------3x=4q+2=x2= 16q2+ 16q+4--------------4from equation 2 we have x2=16q2=4(4q2)4(4q2)=4m where m=4q2from 3rd\xa0equation, we have, x2= 4m+1 where m=4q2+ 2qfrom 4thequation , we have, x2=4m+1 where m= 4q2+4q+1hence,the square of any positive integer is either of the form 4m or 4m+1 for some integer m.\xa0\xa0
10539.

How i am study mathematics

Answer»
10540.

KYA SAHI ME BOARD EXAM NCERT SE HI AAYEGA ??????

Answer» Yes upto a great extent question will come from ncert but some question will also come outside ncert that will be of basic knowledgeIf you study the ncert properly then you will be able to answer maximum question.
Yes ,all board exam in ncert book but only basic
10541.

The sum of two no 15 if sum of their reciprocal is3/10 find the no

Answer» let nos are x and yx+y=15 x = 15 - y1/x + 1/y=3/101/15-y + 1/y=3/10(y+15-y)10 = 3y(15-y)150=45y-3y2y2-15y+50=0y(y-10) - 5(y-10)=0y=10 , 5x=5 , 10\xa0
Sol:Let one of the numbers be x.Other number is (15 - x)Sum of their reciprocals = 3/101/x + 1/(15 - x) = 3/10(15 ) / (15x - x2) = 3/10150 = 45x - 3x23x2 - 45x + 150 = 0x2 - 15x + 50 = 0(x - 10)(x - 5) = 0x = 10 or 5Therefore, the numbers are 10 and 5.If x = 15
10542.

the root of the equation x2 +x_p (p+1)=0

Answer»
10543.

the root of the equation x2+x_p (p+1)

Answer»
10544.

Activities 1

Answer»
10545.

Part 10 ofQ5 from imp Q of intro of trignomentry how

Answer» Gold
10546.

Explain the substitution method

Answer»
10547.

2+4-0*0

Answer» 6
10548.

If tan A, 4/5 find the value of cos A - sin A / cos A +sin A

Answer» 1/9 is the answer
10549.

If Tn+1=4n+5 then find Tn.

Answer» 1
10550.

Class10 ka board ka exam as an ayega kya

Answer»