Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10601.

Show that one and only one out of n, n+2,or n +4 is divisible by 3, where n is any positive integer

Answer» On dividing n by 3, let q be the quotient and r be the remainder.Then, {tex}n = 3q + r{/tex}, where {tex}0 \\leq r < 3{/tex}{tex}\\Rightarrow\\;n = 3q + r{/tex} , where r = 0,1 or 2{tex}\\Rightarrow{/tex}{tex}n = 3q \\;or \\;n = (3q + 1) \\;or\\; n = (3q + 2){/tex}.Case I If n = 3q then n is clearly divisible by 3.Case II If\xa0{tex}\\;n = (3q + 1)\\; {/tex} then {tex} (n + 2)= (3q + 1 + 2) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.In this case, {tex}(n + 2){/tex} is divisible by 3.Case III If n = {tex}(3q + 2){/tex} then {tex}(n + 1) = (3q + 2 + 1) = (3q + 3) = 3(q + 1){/tex}, which is clearly divisible by 3.In this case,{tex} (n + 1){/tex} is divisible by 3.Hence, one and only one out of {tex}n, (n + 1){/tex} and {tex}(n + 2){/tex} is divisible by 3.
10602.

CosA=CosB prove prove that A=B

Answer» CosA=CosB, B/H=B/H, AC/AB=BC/AB, AC=AB, /_A= /_B (angle opposite to equal sides are equal)
cosA=cosBcos(90-A)=cos(90-B)90-A=90-B-A=-BA=B
10603.

COT

Answer» Cotangent (cot)= base / perpendicular
10604.

Prove that p+q th term and p-q th term of an Ap is same as double of its p th term

Answer»
10605.

How many term are there in the Ap 41 38 35 .......8?

Answer» 12 correct
12 terms
This does not comes in AP
12 term
10606.

Sin theta=a²-b²%a²+b²

Answer»
10607.

6x+2√5+5

Answer»
10608.

SinA+cosA=2sin (90-A)

Answer»
10609.

Define Euclid\'s division lemma

Answer» It is an proven statement __________
10610.

What is thm of the triangle chip?

Answer»
10611.

If Sn denotes the sum of nth term, and S2n=3Sn, find S2n/Sn

Answer» S2n=3Snthen S2n/Sn=3
10612.

tanA.cotA

Answer» 1
10613.

117,124,131........which will be the first AP negative term?

Answer» No answer
10614.

A line touches a circle of radius 4cm.another line

Answer» The question is incomplete
10615.

Solve 2x+3y=11 and 2x -4y=-24 and hence find the value of m for which y= mx+3

Answer» Y=5 x=-2 m=-1
10616.

find the value ofsec 60` geometrecally

Answer» Ncert uthaker dekho bhai sabkuch ans mil jayega introduction me sari cheez hai
10617.

area of triangle

Answer» 1/2×b×h
Tumhari life me is ki jaroorat ka hain muje batao daily life mein daily life mein
10618.

What is Integer ?

Answer» A number which is not a fraction; a whole number is known as integer.
10619.

if cos(9a)=sin(a) and a

Answer» Cos(9a)=cos(90-a)So 9a=90-a=> 10a=90a=9Tan(5a)= tan45= 1 :)
10620.

what type of triangle

Answer»
10621.

x+y25

Answer» X + y =25
10622.

Trignometary

Answer»
10623.

The three vertex of a parallelogram are (3,4, (3,8)and (9,8)find the fourth vertex?

Answer» let ABCD is a IIgram with A(3,4) , B(3,8) , C(9,8), D(X,Y)AC and BD are diagonals which bisect each other at mid point O\xa0thus mid point of AC=(3+9)/2, (4+8)/2 = 6, 6mid point of BD = (3+x)/2 , (8+y)/2mid point of AC = mid point of BD6, 6 = (3+x)/2 , (8+y)/2(3+x)/2=6 3+x=12 , x=9(8+y)/2=6 8+y=12 , y = 4the fourth vertex is (9 , 4)check ur answer 3+9/2 = 12/2 , 8+4/2 =12/2 6,6 ok\xa0
10624.

sin 60 value

Answer» √3/2
10625.

Cos/1-cos + cos/1+ sin =4

Answer»
10626.

An aeroplane when flying at a height of 5000 m

Answer»
10627.

State Euclid\'s division algorithm.

Answer» Given positive integers a and b , there exist unique integers q and r satisfying a=bq+r , r is greater than or equal to zero but less then b.
10628.

Prove that: 1/sinA-cosA = Sina+ cosA

Answer»
10629.

How will be the level of questions in board exam

Answer» 60 no. Ka aasani se kerdoge magar 20 no. Ka hila dega in case of mathematics in science value based chemistry me common name jaroor yad kerlena s.st me previous years paper ke kuch question yad ker lena
Very tough
Easy if you study
10630.

In maths board exam question from rd sharma will come or only NCERT questions will come???

Answer» No any questions will come from NCERT all question \'s will come from outside
60% from ncert and 40% other resources
ncert is more good and it\'s basic should be clear then you should prefer rdsharma it is better for securing good marks in the exam . In CBSE BOARD exam questions will be from both books and more from rdsharma . BEST OF LUCK ............
80%ncert and 20%other
10631.

If 2sina=1 and a is an acute angle, then find the value of (3 cosa-4cos*cos*cosa)

Answer»
10632.

4/x+5/y=7 and x=-9/3

Answer» Eazzzzzzzzy
Use substitution youll get the answers easily
10633.

A triangle dpb and PBA ,angledpa45 Angle. Bpa30find db when pb perpendicular da and PBA 10m

Answer»
10634.

What are the identities of trigonometry

Answer» Are the koi questions hai identies to maths e ch trigonometry Mai hai
Refer to book
10635.

what is the consistency

Answer» In maths, consistency means having at least one solution. In regard of quadratic equation there are two cases-(i) unique solution (ii) infinitely many solutions.
Consistency matab ek jagah jiske sare vote ek jagah pade aur be vote ek list mo ho
10636.

How to find cf of less and more than graph

Answer»
10637.

The sum of two number is 8. Determine the numbers if the sum of their reciprocal is 8/15.

Answer» let nos be x and 8 - x1/x + 1/8 -x\xa0=8/15(8-x+x)15=8(xx(8-x)120=64x - 8x28x2 - 64x +120=0x2-8x+15=0x2-5x-3x+15=0x(x-5) - 3(x-5)=0x=5 , 3\xa0
10638.

If tan theta is equal to root 2 minus 1 show that 4 sin theta cos theta is equal to root 2

Answer»
10639.

Derivation of s-d formula

Answer»
10640.

34+54

Answer» 88
Bhai ix class kahan se kiya hame bhi bata dete ham bhi bahi se karlete
88
88
88
10641.

A mixed fractions is :7/25

Answer»
10642.

5+3+-25-32

Answer» Deepak bhai app x ke student ko ye sab batane ki jagah 7ke st. Ko samjaho aur inse pusho ku ix kahan se kiyahai
8-57 = -49
5+3+-25-32 (Here - - becomes+)5+3+(-25-32)5+3+(-57) (here + - becomes -)8+ (-57)-49 is solution
10643.

2222222222222*2222222

Answer» Answer s.m. hi aye ga kerke dekhlo
10644.

if the sum of the first 14 terms of an AP is 1050 and first term is 10 then find the 20th term

Answer» s14=14/2(2a+13d)1050=7(20+13d)1050=140+91d910 = 91dd=10a=10 (given)a20=a+(19d) = 10+190 = 20020th term = 200
ATQ...... 20TH TERM=200A=10D10
10645.

if the sum of first 14 terms of an AP is 1050 and its first term is 10, find the 20th term.

Answer» Given, a = 10, and S14\xa0= 1050Let the common difference of the A.P. be d{tex}\\therefore \\quad S _ { n } = \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}{tex}\\therefore \\quad S _ { 14 } = \\frac { 14 } { 2 } [ 2 \\times 10 + ( 14 - 1 ) d ]{/tex}\xa01050 = {tex}7 (20 + 13 d ){/tex}{tex}20 + 13d{/tex} =\xa0{tex}\\frac{1050}{7}{/tex}\xa0{tex}20 + 13d{/tex} = 150{tex}13d{/tex} = 150 - 20{tex}13d{/tex} = 130{tex}d{/tex} =\xa0{tex}\\frac{130}{13}{/tex}\xa0= 10{tex}a_{20} = a + (n - 1)d{/tex}= 10 + (20 - 1) 10= 10 + 19\xa0{tex}\\times{/tex}\xa010= 10 + 190= 200Hence, a20\xa0= 200
10646.

If tanA=cotB, prove that A+B=90

Answer» ok
merko nhi aata
tan A = cot Bi.e tan A = tan ( 90 - B )A = 90 - BA + B = 90
10647.

Prove that 1+7=8 person will be awarded with rupees 100000000000000000000000000.......

Answer»
10648.

(tanA+cosecB)^2—(cotB–secA)^2=2tanAcotB(cosecA+secB)

Answer» We have,LHS = (tanA + cosec B)2 - (cotB - sec A)2{tex}\\Rightarrow{/tex}\xa0LHS = (tan2A + cosec2B + 2tanA cosecB ) -\xa0(cot2B + sec2A\xa0- 2cotB secA){tex}\\Rightarrow{/tex}\xa0LHS = (tan2A - sec2A)+(cosec2B - cot2B)+2tanA cosecB +2cotB secABut, Sec2A - tan2A =1 & cosec2A - cot2\xa0A = 1{tex}\\therefore{/tex}\xa0LHS = -1 + 1 + 2 tanA cosecB + 2cotB secA{tex}\\Rightarrow{/tex}\xa0LHS = 2 (tanA cosecB + cotB secA){tex}\\Rightarrow{/tex}\xa0LHS = 2 tanA cotB{tex}\\left( \\frac { cosec\\: B } { \\cot B } + \\frac { \\sec A } { \\tan A } \\right){/tex}\xa0[Dividing and multiplying by tanA cotB]{tex}\\Rightarrow{/tex}\xa0LHS = 2tan A cotB{tex}\\left\\{ \\frac { \\frac { 1 } { \\sin B } } { \\frac { \\cos B } { \\sin B } } + \\frac { \\frac { 1 } { \\cos A } } { \\frac { \\sin A } { \\cos A } } \\right\\}{/tex}\xa0[Since, CosecA.SinA =1 , SecA.cosA =1, (sinA/cosA)= tanA & (cosA/SinA) =cotA ]{tex}\\Rightarrow{/tex}\xa0LHS = 2 tanA cotB{tex}\\left( \\frac { 1 } { \\cos B } + \\frac { 1 } { \\sin A } \\right){/tex}\xa0= 2tanA cotB ( secB + cosecA ) = RHS. Hence, proved.
10649.

value

Answer»
10650.

prove the valu of sin45

Answer»