Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11101.

To show experimentaly first twin of cone experimentaly

Answer»
11102.

If A and B are (1,4) and (5,2) respectively, find the coordinates of P when AP/BP=3/4.

Answer» Let A(1, 4) and B(5, 2) be the given points.We know that\xa0{tex}\\frac { A P } { B P } = \\frac { 3 } { 4 }{/tex}or, AP : BP\xa0= 3:4Coordinates of P are{tex}\\left( \\frac { 3 \\times 5 + 4 \\times 1 } { 3 + 4 } , \\frac { 3 \\times 2 + 4 \\times 4 } { 3 + 4 } \\right){/tex}{tex}= \\left( \\frac { 19 } { 7 } , \\frac { 22 } { 7 } \\right){/tex}
11103.

What is the last prime no

Answer»
11104.

Formula of mean

Answer» mean or average valuemean =\xa0sum of all the elements of a set / number of elementse.gmean of 4 , 6 , 8 = 4 + 6\xa0+ 8 / 3 = 18/3 = 6\xa0
11105.

Solve 6x2-x-2=o by factorisation method ( x this is exe not multiplication sign )

Answer»
11106.

What is the portion for half yearly exams?

Answer»
11107.

5,?,?,91/2

Answer»
11108.

(A-P)(B-P)(C-P).............(Z-P)equals

Answer» It is zero because (P-P) will be zero and multiplication of zero with any number yields zero.
11109.

Exercise 7.2 all question and answer

Answer» Check NCERT solutions here\xa0:\xa0https://mycbseguide.com/ncert-solutions.html
11110.

Prove that 9AD=7AD

Answer» Given, {tex}\\triangle ABC{/tex}\xa0in which\xa0{tex}AB = BC = CA{/tex} and D is a point on BC such that BD ={tex}\\frac { 1 } { 3 }{/tex}BC.Prove: 9AD2 = 7AB2.Construction :Draw\xa0{tex}A L \\perp B C{/tex}\xa0Proof: In right triangles ALB and ALC, we have{tex}AB = AC {/tex}(given){tex}AL = AL {/tex}(common){tex}\\therefore \\triangle A L B \\cong \\triangle A L C{/tex}\xa0[by RHS axiom]So,\xa0{tex}BL = CL.{/tex}Thus, BD ={tex}\\frac { 1 } { 3 }{/tex}BC and BL ={tex}\\frac { 1 } { 2 }{/tex}BC.In\xa0{tex}\\triangle ALB{/tex},\xa0{tex}\\angle A L B = 90 ^ { \\circ }{/tex}By using pythagoras theorem, we get\xa0{tex}\\therefore{/tex}\xa0AB2 = AL2 + BL2 ...(i)In\xa0{tex}\\triangle ALD{/tex},\xa0{tex}\\angle A L D = 90 ^ { \\circ }{/tex}By using pythagoras theorem, we get\xa0{tex}\\therefore{/tex}\xa0AD2 = AL2 + DL2\xa0= AL2 + (BL - BD)2= AL2 + BL2 + BD2 -\xa0{tex}2 B L \\cdot B D{/tex}= (AL2 + BL2) + BD2 -\xa0{tex}2 B L \\cdot B D{/tex}= AB2 + BD2 -\xa0{tex}2 B L \\cdot B D{/tex}\xa0[using (i)]{tex}= B C ^ { 2 } + \\left( \\frac { 1 } { 3 } B C \\right) ^ { 2 } - 2 \\left( \\frac { 1 } { 2 } B C \\right) \\cdot \\frac { 1 } { 3 } B C{/tex}{tex}= B C ^ { 2 } + \\frac { 1 } { 9 } B C ^ { 2 } - \\frac { 1 } { 3 } B C ^ { 2 }{/tex}{tex}= \\frac { 7 } { 9 } B C ^ { 2 } = \\frac { 7 } { 9 } A B ^ { 2 }{/tex}\xa0[{tex}\\because{/tex}\xa0BC = AB]Therefore, 9AD2 = 7AB2.
11111.

If a tree of height 90m breaks due to storm and forms 30°. Find distance of base.\xa0

Answer» 30root under 3
90root under3
11112.

Sin theta+2cos theta=1 prove that 2sin theta-cos theta=2

Answer» Given, sin θ + 2 cos θ = 1\xa0On squaring both sides, we get{tex}(sin\\theta+2cos\\theta)^2=1{/tex}{tex}\\Rightarrow sin^2\\theta+4cos^2\\theta+4sin\\theta cos\\theta=1{/tex}⇒ 1 – cos2\xa0θ + 4 (1 – sin2\xa0θ) + 4 sin θ cos θ = 1\xa0{tex}[\\because sin^2\\theta+cos^2\\theta=1]{/tex}⇒ 1 – cos2\xa0θ + 4 – 4 sin2\xa0θ + 4 sin θ cos θ = 1⇒ –cos2\xa0θ – 4 sin2\xa0θ + 4 sin θ cos θ = –4{tex}\\Rightarrow -(cos^2\\theta+4sin^2\\theta-4sin\\theta cos\\theta)=-4{/tex}⇒ cos2\xa0θ + 4 sin2\xa0θ – 4 sin θ cos θ = 4⇒ (cos θ)2\xa0+ (2 sin θ)2\xa0– 2(cos θ) (2 sin θ) = 4⇒ (2 sin θ – cos θ)2\xa0= 22{tex}\\Rightarrow{/tex}2 sin θ – cos θ = 2{tex}{/tex}Hence\xa0proved.
11113.

Tangent to the circle with Centre O V biceps AP prove that triangle AEO is similar to triangle ABC

Answer» According to question we are given that BC is tangent with centre O and OE bisects APIn {tex}\\Delta{/tex}AOP,OA = OP (radii) {tex}\\Delta{/tex}AOP is an isosceles triangle. OE is a median.Since a perpendicular to a circle from a center to a chord bisects it.{tex}\\therefore \\angle OEA = 90^\\circ {/tex}In {tex}\\Delta{/tex}AOE and {tex}\\Delta{/tex}ABC,{tex}\\angle ABC = \\angle OEA = 90^\\circ{/tex}{tex}\\angle A{/tex} is common.{tex}\\Delta{/tex}AEO ~ {tex}\\Delta{/tex}ABC ..…(AA test)
11114.

sec210 --cosec280 --sin15cos75 +sin75cos15÷costhetasin (90_theta) --tan10tan20tan30tan70tan80

Answer»
11115.

What is chord

Answer» The line segment which cut the circle at two different points.
11116.

How to practice maths in board exam

Answer» Check last year papers :\xa0https://mycbseguide.com/cbse-question-papers.html
11117.

Cot(a -b) ,cot(a+b)=45 find sina.tana+cota.cosec

Answer»
11118.

how we find the quardratic equation if digit is in root

Answer» Let α & β are the roots then quadratic epuation bex^2-[α+β]x + [αβ]
11119.

Find the value of p for which the difference between the roots of the equation x^2 +px+8=ois2

Answer»
11120.

Find value of p for which the difference between the roots of the equation X^2 +px+8=o is2

Answer» P= -2Use α+β=-b/a
11121.

2+5

Answer»
11122.

X-1upon =3

Answer» 3x-1÷3
11123.

√2x+√9+x=13

Answer» √2x+√9=13-x Squaring both sides 2x+9=(13-x) square and then solve it
11124.

What is composite numbers

Answer»
11125.

Prove that 2x+3=0

Answer» it can be zero if the value of x is minus 3 upon 2
11126.

(X-a)(x-b)+(x-b) x-c) +(x-c)(x-a)

Answer» Its hard question
11127.

Represent the following pair of linear equation graphically x - 5y = 6 2x - 10y = 12

Answer» Given, x - 5y = 6 or x = 6 + 5y\tx61-4y0-1-2\tThus when x = 6, y = 0when x = 1, y = -1when x = -4, y = -2and 2x - 10y = 12 or x = 5y + 6\tx61-4y0-1-2\twhen x = 6, y =0when x = 1, y = -1when x = -4,y = -2Since the lines are coincident, so the system of linear equations is consistent with infinite many solutions
11128.

If X+Y+Z =98; and the X:Y =2:3 ,Y:Z= 5:8. Find the value of Y

Answer» Y=30
Given : X+Y+Z =98 .......(1)and the X:Y =2:3 ,Y:Z= 5:8.Now, {tex}{X\\over Y}={2\\over 3}\\\\X = {2Y\\over 3}{/tex}Also,\xa0{tex}{Y\\over Z}={ 5\\over 8}\\\\Z= {8Y\\over 5}{/tex}Put values of X and Z in (1), we get{tex}{2Y\\over 3}+Y+{8Y\\over 5}= 98\\\\=> {10Y+15Y+24Y\\over 15}=98\\\\=> {49Y\\over 15}=98{/tex}=> Y = 30
11129.

Find the 31st term of an ap whose 11th term is 38 &16th term is 73

Answer» {tex} a_n=a+(n-1)d{/tex}{tex}a_{11}=a+(11-1)d{/tex}{tex}38=a+10d-------eq(i){/tex}{tex}a_{16}=a+(16-1)d{/tex}{tex}73=a+15d -------eq(ii){/tex}Subtract eq(i) from eq(ii){tex}35=5d{/tex}{tex}d=\\frac{35}{5}=7{/tex}Putt value of d in eq(I){tex}38=a+10×5{/tex}{tex}a=38-50=-12{/tex}Now\xa0{tex}31^{st}{/tex}\xa0term{tex}a_{31}=-12+(31-1)×7=198{/tex}
11130.

25786547865/78

Answer» 330596767.5
11131.

Proof of Pythagoras theorem

Answer» Pythagoras theoremIn a right triangle the square of the hypotenuse is equal to the square of other two sides Given -ABC is a right triangle Right angled at BTo prove -AC2=AB2+BC2Construction -BD prepndicular ACProof- In triangle ABC and triangle ABD Angle A is common Angle ADB=angle B (both common) Therefore triangle ABM similar to triangle ABC AM/BC=BC/AC BC2=AM×AC ......eq1 Similarly, in triangle BMC & triangle ABC CM/AB =AB/AC AB2=CM×AC........eq 2 From 1 and 2AB2+BC2=AM×AC+CM×ACAB2+BC2=AC(AM +MC)AB2+BC2=AC×ACAB2+BC2=AC2(Proved)
11132.

Where implies that use?

Answer»
11133.

If SinA+tana =m and sina-tana=n show that m2-n2=4√mn

Answer»
11134.

What is meant by Dharacharya rule?

Answer» shri Dharacharya formula (rule) also known as quadratic formula is used to solve quadratic equationse.glet us consider quadratic equation ax2\xa0+ bx + c=0then shri Dharacharya rule is {tex}x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}{/tex}
11135.

Prove that diagonals of square are equal

Answer» Given that ABCD is a square.To prove : AC = BDProof:\xa0(i) In a Δ ABC and Δ BAD,AB = AB ( common line)BC = AD ( opppsite sides of a square)∠ABC = ∠BAD ( = 90° )Δ ABC ≅ Δ BAD ( By SAS property)AC = BD ( by CPCT)
11136.

What\'s ionic bound

Answer» Ionic bonding\xa0is the complete transfer of valence electron(s) between atoms. It is a type of chemicalbond\xa0that generates two oppositely charged\xa0ions. Inionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion
11137.

How we solve big roots only in 2 mints

Answer»
11138.

Tan60=

Answer» Answer is √3
√3
11139.

Trgnometry

Answer»
11140.

Ch 7 n c e r t ( example - 1)

Answer»
11141.

56

Answer» Do the prime factorisation. Or apply the method for taking out root which we have studied in class 8.
11142.

Why math is make

Answer»
11143.

Which term of the AP 3,8,13,18,....,is 78?

Answer» Let a=3\xa0d = 5, (8-3)=5an = 7878 = a+(n-1)d78 = 3+ (n-1)578 = 3+5n-578 = -2 +5n78+2 = 5n80 = 5nn = 80/5n =\xa016
an=a+(n-1)d d= a2-a1 = 8-3 = 5if an =78 an=a+(n-1)d 78=3+(n-1)5 78=3+5n-5 78=-2+5n 80=5n therefore n=80÷5 16
11144.

What is the probability of getting 53 Sunday in a year or leap year

Answer» In a year - 1 Sunday because 52 complete weeks and 1 day is extra In a non leap year - 2 Sundays because 52 complete weeks and 2 days are extra
A year =27.5 /182.5
11145.

Proving Pythagoras thearem

Answer»
11146.

sinA+2cosA=1 prove that2sinA+cosA=2

Answer» sinA+2cosA=1or,sinA=(1-2cosA)2sinA+4cosA=2(1-2cosA)+4cosA=2-4cosA+4cosA=2
11147.

Name the good learning apps which u have installed in your phone except BYJU\'S

Answer»
11148.

Sample papers for 2017 18

Answer»
11149.

Cbse sample paper for sep 2017 for class 10

Answer»
11150.

4+4

Answer»