Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11251.

If tan theta+sec theta =x then find the value of sec theta

Answer»
11252.

May I get sample question paper for 10th class 2018 examination

Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
11253.

Tignometric identities

Answer» {tex}sin\\ ^ 2\\theta +cos\\ ^ 2\\theta=1{/tex}{tex}sec\\ ^2\\theta—tan\\ ^2\\theta=1{/tex}{tex}cosec\\ ^2\\theta—cot\\ ^2\\theta=1{/tex}
11254.

sin90

Answer» Sin90degee is 1
sin 90 = 1angle in degrees 0 30 45 60 90 sin {tex} \\sqrt{}{/tex}0/4 {tex} \\sqrt{}{/tex}1/4 {tex} \\sqrt{}{/tex}2/4 {tex} \\sqrt{}{/tex}3/4 {tex}\\sqrt{}{/tex}4/4 sin 0 1/2 1/{tex} \\sqrt{}{/tex}2 {tex} \\sqrt{}{/tex}3/2 1from the table above we get sin 90 = 1 sin 60 = {tex} \\sqrt{}{/tex}3/2 sin 45 = 1/{tex} \\sqrt{}{/tex}2 sin 30 = 1/2 sin 0 = 0
1
0
0
11255.

If AD and PM are medians of ∆s ABC and PQR respectively where ∆ABC~∆PQR prove that AB/PQ =AD/PM

Answer» Given: AD and PM are median of triangles ABC PQR respectively where {tex}\\triangle {/tex} ABC {tex} \\sim {/tex}{tex}\\triangle {/tex}PQRTo prove: {tex}\\frac{{AB}}{{PQ}} = \\frac{{AD}}{{PM}}{/tex}Proof: {tex}\\triangle {/tex}ABC {tex} \\sim {/tex}{tex}\\triangle {/tex}PQR ........Given{tex}\\therefore {/tex}{tex}\\frac{{AB}}{{PQ}} = \\frac{{BC}}{{QR}} = \\frac{{CA}}{{RP}}{/tex} .......(1).....[{tex}\\because {/tex} Corresponding sides of two similar triangles are proportional]and{tex}\\angle{/tex} A = {tex}\\angle{/tex} P, {tex}\\angle{/tex} B = {tex}\\angle{/tex} Q, {tex}\\angle{/tex} C ={tex}\\angle{/tex} R, ..........(2) [ {tex}\\because {/tex} corresponding sides of two similar triangles are proportional]But BC = 2BD and QR = 2QM.............. {tex}\\because {/tex} AD and PM are mediansSo, from(1), {tex}\\frac{{AB}}{{PQ}} = \\frac{{2BD}}{{2QM}}{/tex}{tex}\\Rightarrow {/tex}{tex}\\frac{{AB}}{{PQ}} = \\frac{{BD}}{{QM}}{/tex} ........(3)Also, {tex}\\angle{/tex} ABD = {tex}\\angle{/tex} PQM .........(4).......... From (2){tex}\\therefore {/tex}{tex}\\triangle {/tex} ABD {tex} \\sim {/tex}{tex}\\triangle {/tex}PQM .......SAS similarity criterion{tex}\\therefore {/tex}{tex}\\frac{{AB}}{{PQ}} = \\frac{{AD}}{{PM}}{/tex} ........{tex}\\because {/tex}[Corresponding sides of two similar triangles are proportional]
11256.

Solve the following pairs of linear equation using elimination method:-3x+5y-4=0 and 9x=2y+7

Answer» 3x + 5y - 4 = 0 .......... i9x - 2y - 7 = 0 ..... iimultiply ( i) by 3 and subtract ii from i\xa09x + 15y - 12 = 09x - 2y - 7 = 0+ 9x - 9x +15y - (-2y) - 12 - (-7) = 017y - 12 + 7 = 017y = 5y = 5/17subsituting the value of y in (i ) we get 3x + 5x5/17 - 4 = 0 3x + 25/17 - 4 = 03x - 43/17 = 03x = 43/17x = 43/51therefore x = 43/51 , y = 5/17
3x+5y—4=0-------(i)9x=2y+79x—2y=7------------(ii)multiplying equation (i) by 3 we get,9x+15y—12=09x+15y=12---------(iii)subtracting (iii) from(ii) we get,—2y—15y=7—12—17y=—5y={tex}5\\over17{/tex}, putting this value in (i) we get,3x+5y—4=03x+5({tex}5\\over17{/tex})—4=03x=4—{tex}25\\over17{/tex}3x={tex}68—25\\over17{/tex}3x={tex}43\\over17{/tex}x={tex}43\\over51{/tex}
11257.

a,b,c are in AP proove that b+c,c+a,a+b are in AP

Answer» Since a, b, c are in AP, the common difference will be sameb—a=c—bb+b=c+a2b=c+a2b—c=a-------(i)Now to show b+c, c+a,a+b in A.P , the common difference should be same in each case1st common difference = (c+a)—(b+c) = c+a—b—c = a—b =2b—c—b(from (i)) = b—c2nd common difference = ( a+b)—(c+a) = a+b—c—a =b—cSince, both the common difference is same , so (b+c), (c+a),(a+b) are in AP
11258.

Sum of arithmetic series with 15th term is 180 then 8 th term is

Answer» LetNo.\'s are a-7b a-6b .......a.......a+6b a+7bThen sum = 15a15a=180a=12and the middle term or 8th term =a Then,8th term = a = 12 ans
11259.

If 2x,x+10,3x+2 are in A.P find the value of x.

Answer» Since 2x,x+10 and 3x+2 are in APTherefore the common difference must be same.So x+10-2x=3x+2-(x+10) -x+10=3x+2-x-10 -x+10=2x-8 -x+10-2x+8=0 -3x+18=0 -3x=-18 x={tex}-18\\over -3{/tex} x=6\xa0
11260.

If H.P T4=1/12andT10=1/42 find the common difference

Answer»
11261.

2÷10

Answer» 2 x 1/10 = 1/5 = 0.2
0.2
5
11262.

Trick of multiple 9

Answer»
11263.

In maths ex5.3 question 4 how

Answer» By applying the formula sn=2a+(n-1)d we get an quadratic equation .On solving it you get the answer.
11264.

Can anyone provide me all the formulas of trigonometry??? Plzzz......

Answer» Trigonometric FormulasReciprocal Properties:Quotient Properties:Odd/Even Identities1. sin (-x) = -sin x2. cos (-x) = cos x3. tan (-x) = -tan x4. csc (-x) = -csc x5. sec (-x) = sec x6. cot (-x) = -cot xCofunction Identity - radiansCofunction Identities - degreesPeriodicity Identities - radiansPeriodicity Identities - degreesSum/Difference Identitiessin (x + y) = sin(x) cos(y) + cos(x) sin(y),cos(x + y) = cos(x) cos(y) - sin(x) sin(y),sin(x - y) = sin(x) cos(y) - cos(x) sin(y),cos(x - y) = cos(x) cos(y) + sin(x) sin(y),Double Angle Identitiessin(2x) = 2 sin(x) cos(x),cos(2x) = cos2(x) - sin2(x),cos(2x) = 2 cos2(x) - 1,cos(2x) = 1 - 2 sin2(x),tan(2x) = [2 tan(x)]/[1-tan2(x)],Half Angle IdentitiesProduct identitiesSum to Product Identities
11265.

(a+b)2

Answer» a^2+b^2+2ab
(a+b)(a-b)
11266.

CosA-sinA+1/cosA+sinA-1=cosecA+cotA

Answer» Thank you so much.
{tex}{{\\cos {\\rm{A}} - \\sin {\\rm{A}} + 1} \\over {\\cos {\\rm{A}} + \\sin {\\rm{A}} - 1}}{/tex}Dividing all terms by sin A, we get{tex}{{\\cot {\\rm{A}} - 1 + \\cos ec{\\rm{A}}} \\over {\\cot {\\rm{A}} + 1 - \\cos ec{\\rm{A}}}}{/tex}=\xa0{tex}{{\\cot {\\rm{A}} + \\cos ec{\\rm{A}} - 1} \\over {\\cot {\\rm{A}} - \\cos ec{\\rm{A}} + 1}}{/tex}=\xa0{tex}{{\\cot {\\rm{A}} + \\cos ec{\\rm{A}} - \\left( {\\cos e{c^2}{\\rm{A}} - {{\\cot }^2}{\\rm{A}}} \\right)} \\over {\\cot {\\rm{A}} - \\cos ec{\\rm{A}} + 1}}{/tex}=\xa0{tex}{{\\cot {\\rm{A}} + \\cos ec{\\rm{A}}\\left( {1 - \\cos ec{\\rm{A}} + \\cot {\\rm{A}}} \\right)} \\over {\\cot {\\rm{A}} - \\cos ec{\\rm{A}} + 1}}{/tex}=\xa0{tex}{\\cot {\\rm{A}} + \\cos ec{\\rm{A}}}{/tex}Hence proved
cosA-sinA+1/cosA+sinA-1= 1/sinA+cosA/sinAcosA-sinA+1/cosA+sinA-1=sinA+cosAsinA/sin (square)AcosA-sinA+1/cosA+sinA-1=sina(1+cosA)/sin(square)AcosA-sinA+1/cosA+sinA-1=1+cosA/sinAsinAcosA-sin(square)A+sinA=cosA+sinA-1+cos(square)A+sinAcosA-cosA(by cross multiplication)sincosA-sin(square)A+sinA=cosA+sinA-1+1-sin(square)A+sinAcosA-cosA0=0Hence proved
Yes
11267.

2+2=5

Answer» Not defined
11268.

(a+b)x + (a-b)y = a*2+b*2 (a-b)x + (a+b)y = a*2+b*2*:this number squre with varible

Answer» (a+b)x+(a-b)y=a2+b2\xa0---------(1)(a-b)x+(a+b)y=a2+b2\xa0----------(2)On adding eq(1)and (2) we get(a+b)x+(a-b)y+(a-b)x+(a+b)y=2a2+2b2\xa0(a+b+a-b)x+(a-b+a+b)y=2(a2+b2)2ax+2ay=2(a2+b2)2(ax+ay)=2(a2+b2) ax+ay=a2+b2\xa0-------(3)Now subtracting eq(1) and(2)(a+b)x+(a-b)y -[(a-b)x+(a+b)y]=0(a+b-a+b)x+(a-b-a-b)y =0 2bx-2by=0 2bx=2by x=y ------(4)Subtitute value of x from eq(4) into eq(3) we getay+ay=a2+b2 2ay=a2+b2 y=\xa0{tex}{a^2+b^2\\over 2a}{/tex}From eq (4)\xa0x=y={tex}{a^2+b^2\\over 2a}{/tex}\xa0
11269.

f (x)=sec (1-x×x)

Answer»
11270.

x^2=√5 then x=???

Answer»
11271.

(2)2

Answer» How hard question is this??????????
4
11272.

After which decimal place

Answer» Ali was a coachman and also avery good hunter.
11273.

Prove that √7 is an irrational number

Answer» let us assume that √7 be rational.then it must in the form of p / q [q ≠ 0] [p and q are co-prime]√7 = p / q=> √7 x q = psquaring on both sides=> 7q2= p2\xa0\xa0------> (1)p2\xa0is divisible by 7p is divisible by 7p = 7c [c is a positive integer] [squaring on both sides ]p2\xa0= 49 c2\xa0--------- > (2)subsitute p2\xa0in equ (1) we get7q2\xa0= 49 c2q2\xa0= 7c2=> q is divisble by 7thus q and p have a common factor 7.there is a contradictionas our assumsion p & q are co prime but it has a common factor.so that √7 is an irrational.
11274.

If tanA= tanB × n , sinA= sinB × m Then, prove that: cos²A = m -1 / no -1

Answer» {tex}\\sin {\\rm{A}} = \\sin {\\rm{B}} \\times m{/tex} => {tex}m = {{\\sin {\\rm{A}}} \\over {\\sin {\\rm{B}}}}{/tex} => {tex}{1 \\over {\\sin {\\rm{B}}}} = {m \\over {\\sin {\\rm{A}}}}{/tex}=> {tex}\\cos ec{\\rm{B}} = {m \\over {\\sin {\\rm{A}}}}{/tex}{tex}\\tan {\\rm{A}} = \\tan {\\rm{B}} \\times n{/tex} => {tex}n = {{\\tan {\\rm{A}}} \\over {\\tan {\\rm{B}}}}{/tex} => {tex}{1 \\over {\\tan {\\rm{B}}}} = {n \\over {\\tan {\\rm{A}}}}{/tex}=> {tex}\\cot {\\rm{B}} = {n \\over {\\tan {\\rm{A}}}}{/tex}Using identity,\xa0{tex}\\cos e{c^2}{\\rm{B}} - {\\cot ^2}{\\rm{B}} = 1{/tex}=> {tex}{{{m^2}} \\over {{{\\sin }^2}{\\rm{A}}}} - {{{n^2}} \\over {{{\\tan }^2}{\\rm{A}}}} = 1{/tex}=> {tex}{{{m^2}} \\over {{{\\sin }^2}{\\rm{A}}}} - {{{n^2}.{{\\cos }^2}{\\rm{A}}} \\over {{{\\sin }^2}{\\rm{A}}}} = 1{/tex}=> {tex}{m^2} - {n^2}.{\\cos ^2}{\\rm{A}} = {\\sin ^2}{\\rm{A}}{/tex}=> {tex}{m^2} - {n^2}.{\\cos ^2}{\\rm{A}} = 1 - {\\cos ^2}{\\rm{A}}{/tex}=> {tex}{m^2} - 1 = - {\\cos ^2}{\\rm{A}} + {n^2}.{\\cos ^2}{\\rm{A}}{/tex}=> {tex}{\\cos ^2}{\\rm{A}} = {{{m^2} - 1} \\over {{n^2} - 1}}{/tex}
11275.

How can we solve quadratic equation who have in root

Answer» And if the word problem is given in root try to take the variable in square.Like instead of taking something as (x) take it as(x^2).
11276.

Trignometery

Answer» Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles.
11277.

What is square root of611150

Answer» 781.760832992
11278.

2x plus 5

Answer»
11279.

This year totally new concept of exam what is pattern of questions

Answer»
11280.

Find the roots 1/x - 1/×-2 =3

Answer» {tex}{1\\over x}-{1\\over x-2}=3{/tex}\xa0{tex}{x-2-x\\over x(x-2)}=3{/tex} [by taking L.C.M.]-2=3×(x(x-2))-2=3(x2-2x)-2=3x2-6x3x2-6x+2=0On comparing with ax2+bx+c=0 we get\xa0a=3 b= -6 c=2By using quadratic formula\xa0{tex}x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}{/tex}{tex}x = {-(-6) \\pm \\sqrt{(-6)^2-4×3×2} \\over 2×3}{/tex}{tex}x = {6 \\pm \\sqrt{36-24} \\over 6}{/tex}{tex}x = {6 \\pm \\sqrt{12} \\over 6}{/tex}{tex}x = {6 \\pm 2\\sqrt{3} \\over 6}{/tex}{tex}x = {2(3\\pm \\sqrt{3}) \\over 6}{/tex}{tex}x = {3\\pm \\sqrt{3} \\over 3}{/tex}So roots are\xa0{tex}{3 +\\sqrt{3} \\over 3}{/tex} and {tex}{3 - \\sqrt{3} \\over 3}{/tex}
11281.

√x+y=7. x+√y=11

Answer» first rearrange the equations as followsy - 4 = 3 - {tex}\\sqrt{x}{/tex} ....... i\xa0x - 9 = 2 - {tex} \\sqrt{y}{/tex}\xa0....... iimultiplying i and\xa0ii(y - 4)(x - 9) = (3 - {tex} \\sqrt{x}{/tex})(2 - {tex} \\sqrt{y}{/tex})we can factor LHS({tex} \\sqrt{y}{/tex}\xa0- 2)({tex} \\sqrt{y}{/tex}\xa0+ 2)({tex}\\sqrt{x}{/tex}\xa0+3)({tex} \\sqrt{x}{/tex}\xa0- 3) = (3 - {tex} \\sqrt{x}{/tex})(2 - {tex} \\sqrt{y}{/tex})({tex} \\sqrt{y}{/tex}\xa0- 2)({tex} \\sqrt{x}{/tex}\xa0- 3)({tex} \\sqrt{y}{/tex}\xa0- 2)({tex} \\sqrt{x}{/tex}\xa0- 3) - 1 = 0at least one of the factors must be zero{tex} \\sqrt{y}{/tex}\xa0- 2 = 0 ...... {tex} \\sqrt{y}{/tex}\xa0= 2 ............ y = 4substituting in i3\xa0- {tex} \\sqrt{x}{/tex}\xa0= 0 ........{tex} \\sqrt{x}{/tex}\xa0= 3 ........... x = 9therefore x = 9 and y = 4
first rearrange the equations as followsy - 4 = 3 - sqrt x ....... i\xa0x - 9 = 2 - sqrt y ....... iimultiplying i and\xa0ii(y - 4)(x - 9) = (3 - sqrt x)(2 - sqrt y)we can factor LHS(sqrt y - 2)(sqrt y + 2)(sqrt x +3)(sqrt x - 3) = 3 - sqrt x)(2 - sqrt y)(sqrt y - 2)(sqrt x - 3)(sqrt y - 2)(sqrt x - 3) - 1 = 0at least one of the factors must be zerosqrt y - 2 = 0 ...... sqrt y = 2 ............ y = 4substituting in i3\xa0- sqrt x = 0 ........ sqrt x = 3 ........... x = 9therefore x = 9 and y = 4
11282.

Root of x-1

Answer»
11283.

2x2-3x+5=0 find the root of the following quadratic equation by factorisation

Answer»
11284.

(1-sinx)÷(1-cosx)

Answer»
11285.

Why we take sin theta =p/h

Answer»
11286.

HCF of two number is 23 and LCM is 1449 if one number is 161 then find the other number?

Answer» We know that,{tex}L C M \\times H C F = a \\times b{/tex}{tex}\\Rightarrow 1449 \\times 23 = 161 \\times b{/tex}{tex}\\Rightarrow b = \\frac { 1449 \\times 23 } { 161 } = 207{/tex}
11287.

Find the zeroes of √3x2-8x+4√3

Answer» {tex}\\sqrt 3x^2-8x+4\\sqrt 3=0{/tex}{tex}=> \\sqrt 3x^2-6x-2x+4\\sqrt 3=0{/tex}{tex}=> \\sqrt 3x(x-2\\sqrt 3)-2(x-2\\sqrt 3)=0{/tex}{tex}=> (\\sqrt 3x-2)(x-2\\sqrt 3)=0 {/tex}{tex}=> (\\sqrt 3x-2)= 0 ,(x-2\\sqrt 3)=0 {/tex}{tex}=> x ={2\\over \\sqrt 3},2\\sqrt 3{/tex}
11288.

Prove that (5-2√3)2 is irrational number?

Answer» We will prove it in a same way as we prove that\xa0{tex} \\sqrt{3}{/tex}\xa0is an irrational number..Let us assume that\xa0{tex}({5-2\\sqrt{3}})^2{/tex}\xa0is a rational number.\xa0Then {tex}( {5-2\\sqrt{3}})^2={p\\over q}{/tex} where p and q are co-prime.{tex} =>{/tex}{tex}25-2×5×2{\\sqrt 3}+(2{\\sqrt 3})^2={p\\over q}{/tex} [by using\xa0{tex}(a-b)^2=a^2-2ab+b^2{/tex}{tex}25-20{\\sqrt 3} +4×3={p\\over q}{/tex}{tex}25-20{\\sqrt 3}+12={p\\over q}{/tex}{tex}37-20{\\sqrt 3}={p\\over q}{/tex}{tex}37+{p\\over q}=20{\\sqrt3 }{/tex}{tex}{37\\over 20} +{p\\over 20q}={\\sqrt 3}{/tex} Clearly L.H.S. is a sum of two rational number and therefore L.H.S is rational.So\xa0{tex}{\\sqrt 3}{/tex}\xa0is a rational number.But we know that\xa0{tex}{\\sqrt3}{/tex}\xa0is an irrational number.So our assumption is wrong.Hence\xa0{tex}({5-2\\sqrt{3}})^2{/tex}is an irrational number.
prove (5-2 root3)2\xa0=\xa025-20root 3+12=p/q consider it as rational firstbut solving it we get that root 3 could be represented as rational but it is irrational number thus our assumption that (5-2 root 3)2was wrong and hence it is irrational
11289.

can you please solve the important questions part\xa03 in introduction of trignometry

Answer»
11290.

2/x^2-5/x+2=0Bye using the method of compeleting the square.

Answer» {tex}{2\\over x^2}{/tex}-{tex}{5\\over x}{/tex}+2=0{tex}{2-5x+2x^2\\over x^2}{/tex}=02-5x+2x2=02x2-5x+2=0 ------(1)\xa0Now first of all we will make coefficient of x2\xa0to 1So divide eq.(1) by 2 we getx2-{tex}{5\\over 2}{/tex}x+1=0Now add and subtract the square of half of the coefficient of x we getx2-{tex}{5\\over2}{/tex}x+{tex}({5\\over 4})^2 -({5\\over 4})^2{/tex}+1=0(x-{tex}{5\\over 4})^2{/tex}-{tex}{25\\over 16}{/tex}+1=0 [ by using identity (a-b)2=a2-2ab+b2](x-{tex}{5\\over 4})^2{/tex}-{tex}{25+16\\over 16}{/tex}=0(x-{tex}{5\\over 4})^2{/tex}-{tex}{9\\over 16}{/tex}=0(x-{tex}{5\\over 4})^2{/tex}={tex}{9\\over 16}{/tex}(x-{tex}{5\\over 4}{/tex})={tex}{\\pm \\sqrt{9 \\over 16}}{/tex}(x-{tex}{5\\over 4}){/tex}={tex}{\\pm 3\\over 4}{/tex}So x-{tex}{5\\over 4}{/tex}={tex}{3\\over 4}{/tex}\xa0or x-{tex}{5\\over 4}{/tex}={tex}{-3\\over 4}{/tex}x={tex}{3\\over 4} +{5\\over 4}{/tex} or x={tex}{-3\\over 4}+{5\\over 4}{/tex}x={tex}{3+5\\over 4}{/tex}\xa0or x={tex}{-3+5\\over 4}{/tex}x={tex}{8\\over 4}{/tex}\xa0or x={tex}{2\\over 4}{/tex}x=2 or x=\xa0{tex}{1\\over 2}{/tex}
{tex}2x^2-5x+2=0{/tex}{tex}=> (\\sqrt 2x)^2-2\\times \\sqrt 2 \\times {5\\over 2\\sqrt2}x+2 + ({5\\over 2\\sqrt 2})^2-({5\\over 2\\sqrt 2})^2=0{/tex}{tex}=> (\\sqrt 2x)^2-2\\times \\sqrt 2 \\times {5\\over 2\\sqrt2}x + ({5\\over 2\\sqrt 2})^2+2 -{25\\over 8}=0{/tex}{tex}=> (\\sqrt 2x)^2-2\\times \\sqrt 2 \\times {5\\over 2\\sqrt2}x + ({5\\over 2\\sqrt 2})^2-{9\\over 8}=0{/tex}{tex}=> (\\sqrt 2x-{5\\over 2\\sqrt 2})^2-({3\\over 2\\sqrt 2})^2=0{/tex}{tex}=> (\\sqrt 2x-{5\\over 2\\sqrt 2} +{3\\over 2\\sqrt 2})(\\sqrt 2x-{5\\over 2\\sqrt 2} -{3\\over 2\\sqrt 2}){/tex}{tex}=> (\\sqrt 2x-{1\\over \\sqrt 2} )(\\sqrt 2x-{\\sqrt 2}){/tex}
11291.

If sinA +sin (2)^A=1 Prove that cos (2)^A+cos (4)^A=1

Answer» {tex}SinA + Sin\\ ^ 2A = 1{/tex}{tex}SinA = 1-Sin\\ ^ 2A{/tex}{tex}SinA = Cos\\ ^ 2 A{/tex}( Using identity)Squaring both sides,{tex}(SinA)\\ ^ 2 = ( Cos\\ ^2 A )\\ ^ 2{/tex}{tex}Sin\\ ^ 2 A=Cos\\ ^ 4 A{/tex}{tex}1- Cos\\ ^ 2 A= Cos \\ ^ 4 A{/tex}( Using identity){tex}1 = Cos \\ ^ 2A + Cos \\ ^ 4 A{/tex}{tex}Cos \\ ^ 2A + Cos \\ ^ 4 A = 1{/tex}
11292.

If the zeros of the polynomial f(x)=2xcube +15xsquare 37x-30 are in A.P.,Find them.

Answer» Let, {tex}α{/tex} = a - d, {tex}β{/tex} = a and {tex}\\gamma {/tex} = a + d be the zeroes of the polynomial.f(x) = 2x3 - 15x2 + 37x - 30{tex}\\alpha + \\beta + \\gamma = - \\left( {\\frac{{ - 15}}{2}} \\right) = \\frac{{15}}{2}{/tex} ....... (i){tex}\\alpha \\beta \\gamma = - \\left( {\\frac{{ - 30}}{2}} \\right) = 15{/tex} ......... (ii)From (i)a - d + a + a + d = {tex}\\frac{{15}}{2}{/tex}\xa0So, 3a = {tex}\\frac{{15}}{2}{/tex}a = {tex}\\frac{{5}}{2}{/tex}and From (ii)a(a - d)(a + d) = 15So, a(a2 - d2) = 15{tex}⇒ \\frac{{5}}{2}{/tex}{tex}\\left[\\left(\\frac52\\right)^2\\;-d^2\\right]{/tex} = 15{tex}⇒ \\frac{25}4\\;-d^2{/tex}= 6{tex}⇒ \\;d^2\\;=\\;\\frac{25}4-6\\;{/tex}{tex}⇒ {d^2} = \\frac{1}{4}{/tex}{tex}⇒ d = \\frac{1}{2}{/tex}Therefore, {tex}\\alpha = \\frac{5}{2} - \\frac{1}{2} = \\frac{4}{2} = 2{/tex}{tex}\\beta = \\frac{5}{2}{/tex}{tex}\\gamma = \\frac{5}{2} + \\frac{1}{2} = 3{/tex}.
11293.

Cos(x)(tan(x)+1)(2tan(x)+1)= 2sec(x)+5sin(x)

Answer»
11294.

Prove that\xa0{tex}4\\sqrt{3} - 3\\sqrt{2}{/tex}\xa0is an irrational number.

Answer»
11295.

Prove that cot(2)^A(secA-1/1+sinA)+sec(2)^A (sinA-1/1+secA)=0

Answer» L.H.S. = {tex}{{{{\\cot }^2}{\\rm{A}}\\left( {\\sec {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sin {\\rm{A}}} \\right)}} +{{{{\\sec }^2}{\\rm{A}}\\left( {\\sin {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}}{/tex}= {tex}{{{{\\cot }^2}{\\rm{A}}\\left( {\\sec {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sin {\\rm{A}}} \\right)}} \\times {{1 - \\sin {\\rm{A}}} \\over {1 - \\sin {\\rm{A}}}} \\times {{\\sec {\\rm{A}} + 1} \\over {\\sec {\\rm{A}} + 1}} + {{{{\\sec }^2}{\\rm{A}}\\left( {\\sin {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}}{/tex}= {tex}{{{{\\cot }^2}{\\rm{A}}\\left( {{{\\sec }^2}{\\rm{A}} - 1} \\right)\\left( {1 - \\sin {\\rm{A}}} \\right)} \\over {\\left( {1 - {{\\sin }^2}{\\rm{A}}} \\right)\\left( {1 + \\sec {\\rm{A}}} \\right)}} + {{{{\\sec }^2}{\\rm{A}}\\left( {\\sin {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}}{/tex}= {tex}{{{{\\cot }^2}{\\rm{A}}{\\rm{.ta}}{{\\rm{n}}^2}{\\rm{A}}\\left( {1 - \\sin {\\rm{A}}} \\right)} \\over {{{\\cos }^2}{\\rm{A}}\\left( {1 + \\sec {\\rm{A}}} \\right)}} + {{{{\\sec }^2}{\\rm{A}}\\left( {\\sin {\\rm{A}} - 1} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}}{/tex}= {tex}{{{{\\sec }^2}{\\rm{A}}\\left( {1 - \\sin {\\rm{A}}} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}} - {{{{\\sec }^2}{\\rm{A}}\\left( {1 - \\sin {\\rm{A}}} \\right)} \\over {\\left( {1 + \\sec {\\rm{A}}} \\right)}}{/tex}= 0= R.H.S.
11296.

Factorise -2x2\xa0-5x + 7

Answer»
11297.

If the polynomial x^3+2x^2+ax+b has factors x+1 and x-1, find the value of a and b

Answer» p(x) =\xa0{tex}x^3+2x^2+ax+b{/tex}As x+1 is factor of p(x)Thenp(-1)=0=>\xa0{tex}(-1)^3+2(-1)^2+a(-1)+b=0{/tex}{tex}=>-1+2-a+b=0{/tex}=> b-a = -1 .......(1)Also x-1 is factor of p(x)p(1)=0=>\xa0{tex}(1)^3+2(1)^2+a(1)+b=0{/tex}=> 1+2+a+b=0=> b+a=-3 .......(2)Adding (1) and (2), we get=> 2b= -4=> b =-2From (2)=> 2+a=-3=> a = -5\xa0
11298.

Sir, please give me sample paper of latest patterns\xa0

Answer» Check Sample Papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
11299.

The value of quadratic polynomial f(x)=2x² -3x-2 at x=-2 is ......

Answer» f(x) = 2x2 - 3x - 2=> f(-2) = 2(-2)2 - 3(-2) - 2=> f(-2) = 2 x 4\xa0+ 6 - 2=> f(-2) = 8 + 6 - 2=> f(-2) = 14 - 2=> f(-2) = 12
11300.

find all the common zeroes of the polynomial x3+8x2+15x and x3+5x2-9x-45

Answer» {tex}x^3+8x^2+15x{/tex}To find zero equate it with zero{tex}=> x^3+8x^2+15x= 0{/tex}{tex}=>x[ x^2+8x+15]= 0{/tex}{tex}=>x[ x^2+5x+3x+15]= 0{/tex}{tex}=>x[ x(x+5)+3(x+5)]= 0{/tex}{tex}=>x(x+5)(x+3)= 0{/tex}=> x = 0, -5,-3Similarly,\xa0{tex}x^3+5x^2-9x-45= 0{/tex}{tex}=> x^2(x+5)-9(x+5)= 0{/tex}{tex} =>( x^2-9)(x+5)= 0{/tex}{tex} =>( x+3)(x-3)(x+5)= 0{/tex}x = -3,-5,3Common zeroes are -3 and -5