Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11301.

Find the quadratic polynomial ,the sum of whose roots is √2 and their product is 1/3

Answer» Let the roots of quadratic equation be {tex}\\alpha{/tex}\xa0and {tex}\\beta{/tex}.Then Sum of roots = {tex}\\alpha{/tex}\xa0+ {tex}\\beta{/tex}\xa0= {tex}\\sqrt 2 {/tex}=> {tex}{-b \\over a} = {{\\sqrt 2 } \\over 1}{/tex}=> {tex}{-b \\over a} = {{\\sqrt 2 } \\over 1} \\times {3 \\over 3}{/tex} => {tex}{-b \\over a} = {{3\\sqrt 2 } \\over 3}{/tex} ..............(i)And, Product of roots = {tex}\\alpha{/tex}.{tex}\\beta{/tex}\xa0= {tex}{1 \\over 3}{/tex}=> {tex}{c \\over a} = {1 \\over 3}{/tex} ................(ii)On comparing both the equations, we have{tex}a = 3,b = - 3\\sqrt 2 ,c = 1{/tex}Putting these values in the general quadratic equaiton {tex}a{x^2} + bx + c = 0{/tex}, we get{tex}3{x^2} - 3\\sqrt 2 x + 1 = 0{/tex}
11302.

Use Euclid\'s division algorithm to find the HCF 27727 and\xa053124

Answer» we take 53124 as the dividend and 27727 as the divisorby Euclid\'s Div Lemma53124 = (27727 x 1) + 25397now we take 27727 as dividend and 25397 as the divisor27727 = (25397 x 1 ) + 2330now we take 25397 as dividend and 2330 as the divisor25397 = (2330 x 10) + 2097now we take 2330 as the dividend and 2097 as the divisor2330 = (2097 x 1) + 233now we take 2097 as the dividend and 233\xa0as the divisor2097 = (233 x 9\xa0) + 0Hence the HCF of 27727 and 53124 is 233\xa0\xa0\xa0
53124 =\xa027727 x 1\xa0+ 25397=> 27727 = 25397 x 1 + 2330=> 25397 = 2330 x 10 + 2097=> 2330 = 2097 x 1 + 233=> 2097 = 233 x 9 + 0Since on finding remainder 0, we have the divisor 233.Therefore, H.C.F.(53124, 27727) = 233
11303.

Find the median of the following data :X-6,5,8,10,7,12,15F-4,2,6,5,8,3,9

Answer»
11304.

The following are the marks of 9 students in a class find the median 34,32,48,38,24,30,27,21,35

Answer» To find median write the number in either increasing or decreasing order21,24,27,30,32,34,35,38,48Number of terms = 9 [odd number]So median =\xa0{tex}({Number\\ of\\ terms + 1\\over 2})^{th} term{/tex}=\xa0{tex}({9+1\\over 2})^{th} term = 5^{th} term {/tex}= 32
11305.

Find the largest no. Which divides 546 and 764 , leaving remainder 6 and 8 respectively

Answer» Ans. Subtract the remainder from each number, we get546 - 6 = 540\xa0764 - 8 = 756Using Euclid Lemma Division, We ll find HCF of 540 and 756{tex}=> 756 = 540\xa0\\times 1 + 216 {/tex}{tex}=> 540 = 216\xa0\\times 2 + 108 {/tex}{tex}=> 216 = 108\xa0\\times 2 + 0 {/tex}So 108 is the required Number.
11306.

If a and b are the zeros of p(x) x2-2x+3 . Find the polynomial whose zeros are a-1/a+1 and b-1/b+1

Answer» Ans. Given: {tex}p\\left( x \\right) = {x^2} - 2x + 3{/tex}\xa0, a and b are zeroes of given polynomial.\xa0We KnowSum of zeroes = {tex}-b\\over a{/tex}=> a + b = 2 andproduct of zeroes = {tex}c\\over a{/tex}=> ab = 3For required polynomial,Sum of zeroes = {tex}{{a - 1} \\over {a + 1}} + {{b - 1} \\over {b + 1}}{/tex}= {tex}{{\\left( {a - 1} \\right)\\left( {b + 1} \\right) + \\left( {b - 1} \\right)\\left( {a + 1} \\right)} \\over {\\left( {a + 1} \\right)\\left( {b + 1} \\right)}}{/tex}= {tex}{{ab + a - b - 1 + ab + b - a - 1} \\over {ab + a + b + 1}}{/tex}\xa0= {tex}{{2ab - 2} \\over {ab + a + b + 1}}{/tex}\xa0= {tex}{{2 \\times 3 - 2} \\over {3 + 2 + 1}}{/tex}\xa0= {tex}{4 \\over 6}{/tex}{tex}\\Rightarrow{/tex}{tex}{{ - b} \\over a} = {4 \\over 6}{/tex}Product of zeroes = {tex}\\left( {{{a - 1} \\over {a + 1}}} \\right)\\left( {{{b - 1} \\over {b + 1}}} \\right){/tex}\xa0= {tex}{{ab - a - b + 1} \\over {ab + a + b + 1}}{/tex}= {tex}{{ab - \\left( {a + b} \\right) + 1} \\over {ab + \\left( {a + b} \\right) + 1}}{/tex}\xa0= {tex}{{3 - 2 + 1} \\over {3 + 2 + 1}}{/tex}{tex}\\Rightarrow{/tex}{tex}{c \\over a} = {2 \\over 6}{/tex}On comparing, we get, a = 6, b = -4\xa0and c = 2Putting these values in the general polynomial {tex}a{x^2} + bx + c{/tex},the required polynomias is\xa0{tex}6x^2-4x+2{/tex}
11307.

Find all the zeros of the polynomialx^4-3x^3-5x^2+22x-14 if two of the zeros are√7 and -√7.

Answer» Since {tex}\\sqrt 7{/tex}\xa0and {tex}-\\sqrt 7{/tex}\xa0are the zeroes of the given polynomial.This means (x−{tex}\\sqrt 7{/tex}) and (x+{tex}\\sqrt 7{/tex}) are the factors of the given polynomial.So dividing p(x) = x4−3x3−5x2+21x−14 by (x−{tex}\\sqrt 7 {/tex})(x+{tex}\\sqrt 7{/tex}) i.e. x2−7using long division method we get;\xa0So x2−3x+2 is the factor of the given polynomial. To find other zeroes equate it to 0 we get;x2−3x+2 =0=>x2−2x-x+2 =0=> x(x-2)-1(x-2)=0=> (x-2)(x-1)=0=> x= 1,2
11308.

From a quadtric polynomial whose zeroes are 3-√3÷5 and 3+√3÷5.

Answer» Ans. Given : Zeroes of Polynomial are\xa0{tex}{3-\\sqrt 3\\over 5 }\\ and \\ {\\ 3+\\sqrt 3 \\over 5}{/tex}Sum of zeroes=\xa0{tex}{b\\over a}{/tex} =\xa0{tex}{3-\\sqrt 3\\over 5 } + {\\ 3+\\sqrt 3 \\over 5} = {6\\over 5}{/tex}=> {tex}{-b\\over a } = {30\\over 25}{/tex}\xa0Product of Zeroes = {tex}{c\\over a}{/tex}=\xa0{tex}{3-\\sqrt 3\\over 5 }\\times {\\ 3+\\sqrt 3 \\over 5} = {6\\over 25}{/tex}On comparing, we get = b = -30a = 25 and c = 6So now Required quadratic polynomial = 25x2 - 30x + 6\xa0\xa0
11309.

if the zeroes of x2-kx+6 are in the ratio 3:2, find k.

Answer» Let roots are {tex}\\alpha \\ and \\ \\beta {/tex}{tex}{\\alpha \\over \\beta } = {3\\over 2}{/tex}=>\xa0{tex}\\alpha ={ 3\\over 2}\\beta{/tex}.....(1)ThenProduct of roots =\xa0{tex}c\\over a{/tex}=>\xa0{tex}\\alpha \\beta = 6{/tex}=>\xa0{tex}{3\\over 2}\\beta \\beta = 6{/tex}=>\xa0{tex}\\beta^2 = 4{/tex}=>\xa0{tex}\\beta = \\pm 2{/tex}Putting in (1) we get{tex}\\alpha = \\pm 3{/tex}Now sum of roots =\xa0{tex}-{b\\over a}{/tex}=> 3 + 2 = k or -3 + (-2) = k\xa0=> k = 5 or k = -5\xa0
11310.

In an A.P. the fifth term and tenth term are in the ratio of 1:2 if T12=36 find A.P.\xa0

Answer» Let first term of AP = aCommon difference = dThenT12= a + (12-1)d=> 36 = a + 11d .....(1)Also{tex}{T_5\\over T_{10}} = {1\\over 2}{/tex}=>\xa0{tex}{a+4d\\over a+9d}={1\\over 2}{/tex}=> 2a+8d = a+9d=> a = d ...(2)Put a = d in (1) we get=> 36 = d + 11d=> 36 = 12d=> d = 3From (2) a = 3AP : 3,6,9,12,15
11311.

The distance between the points of co-ordinates (2,3) and (4,1) is

Answer» We know\xa0Distance formula =\xa0{tex}\\sqrt {(x_2-x_1)^2 + (y_2-y_1)^2}{/tex}So,\xa0={tex}\\sqrt {(4-2)^2 + (1-3)^2}{/tex}=\xa0{tex}\\sqrt {4+4} = 2\\sqrt 2{/tex}
Distance between two coordinates = {tex}\\sqrt {{{\\left( {{x_2} - {x_1}} \\right)}^2} + {{\\left( {{y_2} - {y_1}} \\right)}^2}} {/tex}Given: {tex}\\left( {{x_1},{x_2}} \\right) = \\left( {2,3} \\right){/tex}\xa0and {tex}\\left( {{y_1},{y_2}} \\right) = \\left( {4,1} \\right){/tex}Then, Distance = {tex}\\sqrt {{{\\left( {4 - 2} \\right)}^2} + {{\\left( {1 - 3} \\right)}^2}} {/tex}\xa0= {tex}\\sqrt {{{\\left( 2 \\right)}^2} + {{\\left( { - 2} \\right)}^2}} {/tex} = {tex}\\sqrt {4 + 4} {/tex}\xa0= {tex}2\\sqrt 2 {/tex}\xa0units
11312.

If the difference between the roots of the equation x2+px+8=0, then what is the value of p?

Answer» Ans, Let\xa0{tex}\\alpha \\ and \\ \\beta {/tex}\xa0be the roots of equation.Then\xa0{tex}\\alpha \\ - \\beta = 2 \\ \\ ........... (1) [Given ]{/tex}We know,\xa0Sum of roots =\xa0{tex}-{b\\over a}{/tex}{tex}\\alpha \\ + \\beta = -p \\ .............. (2) {/tex}Adding (1) and (2), we get{tex}2\\alpha = 2- p {/tex}=>\xa0{tex}\\alpha = {2-p\\over 2}{/tex}Subtracting (1) from (2), we get\xa0{tex}2\\beta = - p -2 {/tex}=>\xa0{tex}\\beta = {-p-2\\over 2}{/tex}Also,Product of roots =\xa0{tex}c\\over a{/tex}=>\xa0{tex}\\alpha \\times \\beta = 8{/tex}=>\xa0{tex}{2-p\\over 2} \\times {-2-p\\over 2} = 8 {/tex}=>\xa0{tex} -4 -2p+2p+p^2 = 32{/tex}=> p2\xa0= 36=> p = -6, 6\xa0
11313.

Check whether the digit 7 power n ends with the digit zero\xa0

Answer» Every number that end with zero has 2 and 5 as its prime factor.As 7n don\'t have both 2 and 5 as prime factor. It ll not end with zero\xa0
11314.

L.c.m of two numbers is 2175 h.c.f is 144one number is 725 find the other number.\xa0

Answer» Let other numebr be x.We know that,Product of two numbers = L.C.M. x H.C.F.725 x {tex}x{/tex}\xa0= 2175 x 144=> {tex}x = {{2175 \\times 144} \\over {725}}{/tex}=> {tex}x = 432{/tex}Therefore, the other number is 432.\xa0
11315.

If tan theta + sin theta=m, tan theta - sin theta = n,show that m2-n2=4{(mn)1\\2}

Answer» L.H.S. {tex}{m^2} - {n^2}{/tex}\xa0= {tex}{\\left( {\\tan \\theta + \\sin \\theta } \\right)^2} - {\\left( {\\tan \\theta - \\sin \\theta } \\right)^2}{/tex}= {tex}\\left( {\\tan \\theta + \\sin \\theta + \\tan \\theta - \\sin \\theta } \\right)\\left( {\\tan \\theta + \\sin \\theta - \\tan \\theta + \\sin \\theta } \\right){/tex} [Since {tex}{a^2} - {b^2} = \\left( {a + b} \\right)\\left( {a - b} \\right){/tex}]= {tex}\\left( {2\\tan \\theta } \\right)\\left( {2\\sin \\theta } \\right){/tex}= {tex}4 \\times {{\\sin \\theta } \\over {\\cos \\theta }} \\times \\sin \\theta {/tex}= {tex}{{4{{\\sin }^2}\\theta } \\over {\\cos \\theta }}{/tex}R.H.S. {tex}4\\sqrt {mn} {/tex}\xa0= {tex}4\\sqrt {\\left( {\\tan \\theta + \\sin \\theta } \\right)\\left( {\\tan \\theta - \\sin \\theta } \\right)} {/tex}= {tex}4\\sqrt {{{\\tan }^2}\\theta - {{\\sin }^2}\\theta } {/tex} [Since {tex}{a^2} - {b^2} = \\left( {a + b} \\right)\\left( {a - b} \\right){/tex}]= {tex}4\\sqrt {{{{{\\sin }^2}\\theta } \\over {{{\\cos }^2}\\theta }} - {{\\sin }^2}\\theta } {/tex}= {tex}4\\sqrt {{{{{\\sin }^2}\\theta - {{\\sin }^2}\\theta .{{\\cos }^2}\\theta } \\over {{{\\cos }^2}\\theta }}} {/tex}= {tex}4\\sqrt {{{{{\\sin }^2}\\theta \\left( {1 - {{\\cos }^2}\\theta } \\right)} \\over {{{\\cos }^2}\\theta }}} {/tex}= {tex}4\\sqrt {{{{{\\sin }^2}\\theta .{{\\sin }^2}\\theta } \\over {{{\\cos }^2}\\theta }}} {/tex}= {tex}{{4{{\\sin }^2}\\theta } \\over {\\cos \\theta }}{/tex}L.H.S. = R.H.S.
11316.

What is procedure of using elimination method?

Answer» Ans. The elimination method of solving systems of equations is also called the addition method. To solve a system of equations by elimination we transform the system such that one variable "cancels out".Here are the steps to follow:Step 1 : Try to eliminate a variable as you add the left sides and the right sides of the two equationsStep 2 : Set the sum resulting from adding the left sides equal to the sum resulting from adding the right sidesStep 3 : Solve for the variable that was not cancelled or eliminatedStep 4 : Use the answer found in step 3 to solve for the other variable by substituting this value in one of the two equations
11317.

tan²A+cot²A+2=sec²A cosec²A

Answer» tan2a + cot2a + 2= sec2a - 1 + cosec2a - 1 + 2= sec2a - 2+2 + cosec2a=sec2a + cosec2a
11318.

Write the quadratic polynomial having -1/4,1 as it\'s zeroes\xa0

Answer» Ans. Let equation is ax2\xa0+ bx + c = 0, roots are\xa0{tex}-{1\\over 4},1{/tex}.We know that,Sum of roots =\xa0{tex}-{b\\over a}{/tex}=>\xa0{tex}-{1\\over 4} + 1 = -{b\\over a}{/tex}{tex}=> {3\\over 4} = -{b\\over a}{/tex}=> b = -3 and a = 4AlsoProduct of roots =\xa0{tex}c\\over a{/tex}=>\xa0{tex}-{1\\over 4}\\times 1 = {c\\over a}{/tex}{tex}=> -{1\\over 4}= {c\\over a}{/tex}c = -1 and a = 4Put Values of a,b,c in equation we get,4x2\xa0- 3x -1 = 0 Requried equation
11319.

If one zero of the quadratic polynomial x2+3x+k is 7,then find the value of k

Answer» Let p(x) = x2 + 3x + kIf one zero of the p(x) is 7, thenp(7) = 0=> (7)2 + 3 x 7 + k = 0=> 49 + 21 + k = 0=> 70 + k = 0=> k = -70
11320.

If smallest factor of a is 3.smallest factor of b is 7.find smallest factor of a+b

Answer» As a has 3 as smallest\xa0factor and b has 7 as smallest factor it means both numbers are odd. Sum of two odd numbers is always a even number so the smallest factor of (a+b) ll be 2.
smallest factor of any nnumber is 1. therefore 3 and 7 can never be the smallest factor of required number
11321.

What is the value of the following\xa01. 002. 0/0\xa0

Answer» 00\xa0= 1{tex}{0\\over 0} = undefined {/tex}
11322.

Does arihant publishes ncert exemplar.

Answer» Yes it publishes
11323.

If alpha and beta are the zeroes of the polynomial 3x2-6x-7x.find alpha2\xa0and beta2

Answer» 3x^2-6x-7x=03x^2-13x=0x(3x-13)=0therfore zeroe are 0 and 13/3alpha^2= o^2=0beta^2=(13/3) = 169/9...........
11324.

find the common difference and next 3 terms of AP 3,-2,-7,-12

Answer» Common difference = {tex}-2-3=-5{/tex}Therefore, next three terms are:{tex}-12+(-5)=-12-5=-17{/tex}{tex}-17+(-5)=-17-5=-22{/tex}{tex}-22+(-5)=-22-5=-27{/tex}
its common difference is 5next 3 terms will be -17,-22,-27,-32 and so on\xa0
11325.

What will be value of (6561)0.25\xa0?Plz solve it also.

Answer» {tex}(6561)^{0.25}{/tex}{tex}= (6561)^{25\\over100}{/tex}{tex}= (6561)^{1\\over 4}{/tex}{tex}=[(81)^{2}]^{1\\over 4}{/tex}{tex}=(81)^{1\\over 2}{/tex}= 9
11326.

Factorise\xa0X2+2√2x-6\xa0

Answer» Given expression=x2+2√2x-6 =x2+3√2x-√2x-6 =x(x+3√2)-√2(x+3√2) =(x+3√2)(x-√2)
{tex}{x^2} + 2\\sqrt 2 x - 6{/tex}= {tex}{x^2} + 3\\sqrt 2 x - \\sqrt 2 x - 6{/tex}= {tex}x\\left( {x + 3\\sqrt 2 } \\right) - \\sqrt 2 \\left( {x + 3\\sqrt 2 } \\right){/tex}= {tex}\\left( {x + 3\\sqrt 2 } \\right)\\left( {x - \\sqrt 2 } \\right){/tex}
√2,-3√2.
11327.

\xa0Write the zeroes of the polynomial 4x2\xa0–4 x +1.

Answer» 4x2 - 4x + 1= (2x)2 - 2 . 2x . 1 + (1)2= (2x - 1)2 [Using identity a2 - 2ab + b2]= (2x - 1)(2x - 1)Taking, 2x - 1 = 0 and 2x - 1 = 0x = 1/2 and x = 1/2Therefore, the zeroes of given polynomial are 1/2 and 1/2
11328.

Please tell me how can i answer betterly in maths exam

Answer» Start with questions having high marks.Eg: 4 marks . then go for next .Highlight ur answer with pencil.don\'t take too much time for one sum go for next sum.
11329.

How to manage time in maths exam?\xa0

Answer» There is always a problem of time in maths exam paper. I will tell you the correct method of doing the maths paper.Always start the paper from last section, and then second last and so on. Because at the starting of paper your mind is fresh, you can handle the long questions easily which are given in last section.But if you start from first section, then sometimes 1 marks quetion take your 4 to 5 mins. And in last 1 hour you confuse what to do last section of long questions which 5 marks each. And you will leave those quetion because of short time. This effects your marks too much. But if you start from last section and in the end of the paper even your complete A section leave, then it matters only 5 marks(1 marks for each question very short answer type question). This not effects your marks too much.
11330.

X2 _\xa02(a2+ b2)x + (a2_\xa0b2)2\xa0= 0Find the roots?\xa0

Answer» {tex}{x^2} - 2\\left( {{a^2} + {b^2}} \\right) + {\\left( {{a^2} - {b^2}} \\right)^2} = 0{/tex}Using {tex}x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}{/tex}{tex}x = {{2\\left( {{a^2} + {b^2}} \\right) \\pm \\sqrt {{2^2}.{{\\left( {{a^2} + {b^2}} \\right)}^2} - 4 \\times 1 \\times {{\\left( {{a^2} - {b^2}} \\right)}^2}} } \\over {2 \\times 1}}{/tex}{tex}x = {{2\\left( {{a^2} + {b^2}} \\right) \\pm \\sqrt {{{\\left\\{ {4\\left( {{a^2} + {b^2}} \\right)} \\right\\}}^2} - 4{{\\left( {{a^2} - {b^2}} \\right)}^2}} } \\over 2}{/tex}{tex}x = {{2\\left[ {\\left( {{a^2} + {b^2}} \\right) \\pm 2\\sqrt {{{\\left( {{a^2} + {b^2}} \\right)}^2} - {{\\left( {{a^2} - {b^2}} \\right)}^2}} } \\right]} \\over 2}{/tex}{tex}x = {a^2} + {b^2} \\pm \\sqrt {\\left( {{a^2} + {b^2} + {a^2} - {b^2}} \\right)\\left( {{a^2} + {b^2} - {a^2} + {b^2}} \\right)} {/tex}{tex}x = {a^2} + {b^2} \\pm \\sqrt {\\left( {2{a^2}} \\right)\\left( {2{b^2}} \\right)} {/tex}{tex}x = {a^2} + {b^2} \\pm 2{a}{b}{/tex}Taking positive sign Taking negative sign{tex}x = {a^2} + {b^2} + 2{a}{b}{/tex}{tex}x = {a^2} + {b^2} - 2{a}{b}{/tex}{tex}x = {\\left( {a + b} \\right)^2}{/tex}{tex}x = {\\left( {a - b} \\right)^2}{/tex}
11331.

What r all the important concepts that we should look in for maths board exam class 10 ?

Answer»
11332.

Find the value of k for which the equation x2+4x+k=0 has coincident roots

Answer» Ans. x2\xa0+ 4x + k = 0,\xa0On Comparing with ax2 + bx + c = 0,We get a = 1, b = 4 and c = k\xa0For Coincident roots D = 0=> b2 - 4ac = 0=> 42\xa0- 4 (1)(k) = 0=> 16 - 4k =0=> 4k = 16\xa0=> k = 4\xa0
11333.

If ratio of the roots of equation px2+qx+q=0 is a:b, prove that √a÷b + √b÷a + √q÷p=0.

Answer» Let the roots of the given equation be {tex}\\alpha {/tex}\xa0and {tex}\\beta{/tex}.Then, {tex}\\alpha {/tex}\xa0+ {tex}\\beta{/tex}\xa0= {tex}{{ - q} \\over p}{/tex} and {tex}\\alpha .\\beta = {q \\over p}{/tex}Given: {tex}{\\alpha \\over \\beta } = {a \\over b}{/tex}Now, {tex}\\sqrt {{a \\over b}} + \\sqrt {{b \\over a}} + \\sqrt {{q \\over p}} = 0{/tex}=> {tex}\\sqrt {{\\alpha \\over \\beta }} + \\sqrt {{\\beta \\over \\alpha }} + \\sqrt {\\alpha \\beta } = 0{/tex} [Since, {tex}{\\alpha \\over \\beta } = {a \\over b}{/tex}\xa0and {tex}\\alpha .\\beta = {q \\over p}{/tex}]=> {tex}{{\\sqrt \\alpha } \\over {\\sqrt \\beta }} + {{\\sqrt \\beta } \\over {\\sqrt \\alpha }} + \\sqrt {\\alpha \\beta } = 0{/tex}=> {tex}{{\\alpha + \\beta + \\alpha \\beta } \\over {\\sqrt {\\alpha \\beta } }} = 0{/tex}=> {tex}\\alpha + \\beta + \\alpha \\beta = 0{/tex}=> {tex}{{ - q} \\over p} + {q \\over p} = 0{/tex} [Since, {tex}\\alpha + \\beta = {{ - q} \\over p}{/tex}\xa0and {tex}\\alpha \\beta = {q \\over p}{/tex}]=> {tex}-q+q=0{/tex}=> 0 = 0Hence proved.
11334.

is_/3,_/6_/9_/12 form an a.p. ??sir I need answer immediately\xa0

Answer» Common difference,{tex}d_1 = \\sqrt { 6 } - \\sqrt { 3 }{/tex}{tex}= \\sqrt { 3 } ( \\sqrt { 2 } - 1 ){/tex}{tex}d_2= \\sqrt { 9 } - \\sqrt { 6 }{/tex}{tex}= \\sqrt { 3\\times3 } - \\sqrt{2\\times 3}{/tex}{tex}= 3 - \\sqrt { 6 }{/tex}{tex}d_3 = \\sqrt { 12 } - \\sqrt { 9 } {/tex}{tex}= \\sqrt { 4\\times3 } - \\sqrt { 9 } {/tex}{tex}= 2 \\sqrt { 3 } - 3{/tex}As common difference does not equal.Hence, The given series is not in A.P.
11335.

Find four consecutive terms in AP whose sun is 20 and the sum of whose square is 120 ?

Answer» Ans. Let first term of A.P. is a-2dCommon difference is d,Then four terms are, a-2d, a-d, a and a+dAccording To Ques,=> a - 2d + a - d + a + a + d = 20=> 4a - 2d = 20=> 2a - d = 10=> d = 2a - 10 ……………(1)Also,=> (a-2d)2 + (a-d)2 + a2 +(a+d)2 = 120put value of d from (1)=> (a - 4a+20)2\xa0+(a-2a+10)2\xa0+\xa0a2 +(a+2a-10)2= 120=> (20-3a)2 + (10-a) + a2 + (3a-10)2\xa0= 120=> 400 + 9a2 - 120a + 100+ a2- 20a + a2+ 9a2\xa0+ 100 - 60a = 120=> 20a2 - 200a + 600 = 120divide by 20=> a2 - 10a + 30= 6=> a2 - 10a + 24\xa0= 0=> a2\xa0- 6a - 4a + 24 =0=> a(a-6) -4(a-6) = 0=> (a-6)(a-4) = 0=> a = 6, 4if a = 6 then d = 2and if a = 4 then d = -2First A.P = 2, 4, 6, 8,....second A.P. = 8, 6, 4, 2,...\xa0\xa0
11336.

In a family of 3children the probability of having at least one boy is :

Answer» Ans. Three children can be as follow:BBB, BBG, BGB, BGG,\xa0GBB, GBG,\xa0GGB, GGG.No of total cases = 8No of favorable cases = 7Probability = 7/8
\t7/8
11337.

How many terms of AP65 60 55 be taken to give the sun zero\xa0

Answer» Ans. First term = 65Common Difference = -5Let number of terms required = nSn\xa0= 0=>\xa0{tex}{n\\over 2}[{2\\times 65 +(n-1)\\times (-5)}] =0{/tex}=> n[130 -5n +5] = 0=> n (135-5n)=0=> 135-5n = 0=> 135 = 5n=> n = 27number of terms = 27
11338.

Theorem of sa 2.which will come in board exam .\xa0

Answer» We have only 2 theorems so anything can be asked for the safer side learn all the theorems.....
11339.

If in the clock the given time is 2:30 then what\'s the angle formed at the given time 2:30.\xa0

Answer» Angle formed by clock hands =360/12*4 =30*4 =120 degrees
11340.

Factorise:11x^2-122x+11=0

Answer» Its easy bro:11x2_122x+11=011x2 _121x - x+11=011x(x-11)-1(x-11)=0Rest u r smart...Best of luck
11341.

Find the sum of all 3 digit numbers which leave remainder 3 when divided by 5.

Answer» Three digit numbers which leave the remainder 3 when divided by 5 are 103, 108, 113,......., 998.103, 108, 113,......, 998 is an A.PFirst term of the A.P,\xa0a\xa0= 103Common different of the A.P,\xa0d\xa0= 5Let 998 be the\xa0nth\xa0term of the A.P.an\xa0=\xa0a\xa0+ (n\xa0– 1)\xa0d∴ 103 + (n\xa0– 1) × 5 = 998⇒ 5 (n\xa0– 1) = 998 – 103 = 895 ⇒ (n\xa0– 1) = 179⇒ n\xa0= 180Sum of all three digit numbers which leaves remainder 3 when divided by 5was this answer useful??????\xa0
11342.

\xa0Find the sum of (1− 1) + (1− 2) + (1− 3) ……. upto n terms. n n n

Answer» We can write the given series as:(1+1+1+.....+n) - (1+2+3+........+n)= 1 X n - Sn= n -\xa0{tex}{ n (n+1) \\over 2}{/tex}=\xa0{tex}{n-n^2\\over 2}{/tex}
11343.

Prove that am + n + am - n =2am

Answer» Let the first term and common difference of the A. P. be\xa0a\xa0and\xa0d\xa0respectively.Then (m\xa0+\xa0n)th\xa0term (am\xa0+\xa0n\xa0) =\xa0a\xa0+ (m\xa0+\xa0n\xa0– 1)\xa0dand (m\xa0–\xa0n)th\xa0term (am –\xa0n\xa0) =\xa0a\xa0+ (m\xa0–\xa0n\xa0– 1)\xa0d\xa0am +\xa0n\xa0+\xa0am –\xa0n\xa0=\xa0a\xa0+ (m\xa0+\xa0n\xa0– 1)\xa0d\xa0+\xa0a\xa0+ (m\xa0–\xa0n\xa0– 1)\xa0d= 2a\xa0+ (m\xa0+\xa0n\xa0– 1\xa0+\xa0m\xa0–\xa0n\xa0– 1)\xa0d= 2a\xa0+ (2m\xa0– 2)\xa0d\xa0= 2a\xa0+ 2 (m\xa0– 1)\xa0d= 2[a\xa0+ (m\xa0– 1)\xa0d] = 2am\xa0= 2 (m\xa0th\xa0term)
11344.

if the quadratic equation x2+4x+k=0, has rreal and distinct roots, find the value of k

Answer» Ans. For real and distinct roots,D> 0=> b2-4ac > 0=> 16-16k > 0=> 1 - k > 0=> k < 1\xa0
11345.

If the sum of first n terms of an ap is n2 find the 5th\xa0term of the ap\xa0

Answer»
11346.

If the sum of first n terms of an ap is n2\xa0find the 5th\xa0term of the ap\xa0

Answer» {tex}sum\\,of\\,first\\,n\\,terms\\,{S_n} = {n^2}{/tex}{tex}nth\\,term\\,{a_n} = {S_n} - {S_{n - 1}}{/tex}{tex} = {n^2} - {\\left( {n - 1} \\right)^2}{/tex}{tex} = {n^2} - \\left( {{n^2} - 2n + 1} \\right){/tex}{tex} = 2n - 1{/tex}{tex}5th\\,term\\,{a_5} = 2 \\times 5 - 1 = 9{/tex}\xa0
11347.

If one root of the quadratic Equation 2xsq+kx-6=0 is 2 then find the value of k+1.

Answer» As we know that root of an equation is one of the values which satisfies the equation, we have -2(2)2\xa0+ 2k - 6 =08+2k-6=02k+2=02 (k+1)=0k+1=0 Ans.\xa0
11348.

die is thrown twice. The probability that two will not come up either time is\xa0

Answer» Naha ke aa pehle\xa0
No. of favourable outcome (two will not come) = 25Total outcome = 36Required probability = 25/36
11349.

A circle with centre O has tangent PQ and PB. PQ is 9cm .Angle PAB is 60*. Find length of AB.\xa0

Answer» The angle is PQB\xa0
11350.

Which term of the sequence 20,77/4,37/2,67/4 is the 1st negative term\xa0\xa0\xa0

Answer» For the first negative term,an < 0{tex}20 + (n - 1) \\cdot \\left( {\\frac{{ - 3}}{4}} \\right) < 0{/tex}\xa0{tex}\\left[ {\\because d = \\frac{{77}}{4} - 20 = \\frac{{ - 3}}{4}} \\right]{/tex}{tex} \\Rightarrow \\frac{{20}}{1} - \\frac{3}{4}n + \\frac{3}{4} < 0{/tex}{tex} \\Rightarrow \\frac{{80 - 3n + + 3}}{4} < 0{/tex}{tex} \\Rightarrow 83 - 3n < 0{/tex}{tex} \\Rightarrow - 3n < - 83{/tex}{tex} \\Rightarrow n > \\frac{{83}}{3}{/tex}28th term is first negative term.