Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11401.

find the some of two consecutive postive integers sum of whose squares is 365\xa0

Answer» Let one of the consecutive number be x.Therefore other consecutive number be (x + 1)According to question,(x)2\xa0+ (x + 1)2\xa0= 365x2\xa0+ x2\xa0+ 2x + 1 = 3652x2\xa0+ 2x - 364 = 0x2\xa0+ x - 182 = 0x2\xa0+ 14x - 13x - 182 = 0x(x + 14) - 13(x + 14) = 0(x + 14)(x - 13) = 0x = -14 (neglected), x = 13Therefore required two positive integers are 13 and 14.
11402.

Are the points (-3,-3),(-3,2)and(-3,5)collinear?give reason.

Answer» For collinear,Area of triangle = 01/2[x1(y2-y3) + x2(y3-y1) + x3(y1-y2) = 0(-3)(2-5) - 3(5+3) - 3(-3-2) = 09 - 24 + 15 = 024 - 24 = 00 = 0Since Area of traingle = 0therefore, points are collinear.
11403.

Find the locus of centres of circles which touch two intersecting lines.

Answer» let l1 and l2 be two intersecting lines which intersect at point P.\xa0Let O be the centre of circle which touches both l1 and l2 .In triangles OAP and OBP, we haveOA=OB (each equal to radius)\xa0PA=PB(tangents to a circle are equal)\xa0OP=OPso, by sss congruence criteria, we haveΔOAP congruent to ΔBPO
11404.

What can be said about the roots of quadratic equation ax*2 +bx +c =0, where a>0,b=0,c>0?

Answer» Here Discriminant is b2-4ac which is -4ac( Since b = 0)Now Since a and c are positive which implies that the discriminant is negative, Hence this equation has imaginary roots.
11405.

If P(2,4) is equidistant from Q(7,0) and R (X,9), find the value of X. Also find the distance PQ.

Answer» Given: P(2,4) is equidistnat from Q(7,0) and R(X,9).then PQ = PRUsing Distance Formula :\xa0=\xa0(x2-x1)2\xa0+\xa0(y2-\xa0y1)2PQ =\xa025\xa0+\xa016\xa0\xa0=\xa041PR\xa0=\xa0(x-2)2\xa0+\xa0(5)2PQ = PR\xa0Sqauring Both Side, We get\xa0x2\xa0+ 4\xa0-4x + 25\xa0= 41=> x2\xa0- 4x -12 = 0=>\xa0x2\xa0- 6x +2x -12 = 0=> x(x-6) +2(x-6) = 0=> (x-6) (x+2) = 0=> x = -2 , 6\xa0
11406.

Solve quadratic equation by factorization\xa0x-a/ x-b +x -b/ x-a = a/b+ b/a

Answer» x-ax-b+x-bx-a=ab+balet\xa0x-ax-b=y\xa0⇒x-bx-a=1y⇒y+1y=a2+b2ab⇒y2+1y=a2+b2ab⇒aby2-a2y-b2y-ab=0⇒ayby-a-bby-a=0⇒by-aay-b=0⇒y=ab\xa0or\xa0y=bacase-1if\xa0y=ab⇒x-ax-b=ab⇒bx-ba=ax-ba⇒bx=axbx-ax=0⇒x(b-a)=0⇒x=0Case-2if\xa0y=ba⇒x-ax-b=ba⇒ax-a2=bx-b2⇒ax-bx=a2-b2⇒x(a-b)=(a-b)(a+b)x=a+bHence\xa0x=0\xa0or\xa0a+b
11407.

1/a+b+x=1/a+1/b+1/x .........find x

Answer» 1/a+b+x\xa0=1/a+1/b+1/x1/a+b+x-1/x = 1/a+1/bx-(a+b+x)/(a+b+x)x = a+b/abx-a-b-x/(a+b+x)x= a+b/ab-(a+b)/(a+b+x)x = a+b/ab\xa0(when we cross multiply).\xa0-ab(a+b) = a+b(a+b+x)x-ab(a+b)/a+b = ax+bx+x2\xa0-ab = ax+bx+x2ax+bx+x2+ab (on transposing left to right).\xa0ax+x2+bx+abx(a+x) +b(x+a)(x+a)(x+b)therefor x=-a x =-b-----------------------------
11408.

Find 15 term of A.P with second term 11 and common difference\xa0

Answer»
11409.

For what value of K are the roots of the quadratic equation kx(x-2)+6=0\xa0

Answer» For Equal roots D = 0kx(x-2) + 6 = 0kx2 -2kx + 6 = 0comparing with ax2+ bx + c = 0, we get\xa0a = k, b = -2k , c = 6D = b2 - 4acPut value of a b c(-2k)2 - 4*6*k = 04k2 - 24k = 04k(k-6) =0\xa04k = 0 or k-6=0k = 6
11410.

Why volume of cone is1/3 of cylinder volume

Answer»
11411.

Find the probability that a non leap year chosen at random has\xa0\t52 Sundays\t53 Sundays

Answer» 2) A non-leap year has 365 daysA year has 52 weeks. Hence there will be 52 Sundays for sure.52 weeks = 52 x 7 = 364 days .365– 364 = 1day extra.In a non-leap year there will be 52 Sundays and 1day will be left.This 1 day can be\xa0Sunday, Monday,\xa0Tuesday, Wednesday, Thursday,friday,Saturday, Sunday.Of these total 7 outcomes, the favourable outcomes are 1.Hence the probability of getting 53 sundays = 1 / 7.1)∴ probability of getting 52 sundays = 1 - 1/ 7 = 6 / 7.
11412.

\xa0the sum of intiger and their reciprocal is 145/12. Find the intiger ?

Answer» Solution:Let the integer = xThen reciprocal = 1/xAccording to Questionx + 1/x = 145/12=> (x2+1)/x = 145/12=> 12x2 + 12 = 145x=> 12x2\xa0- 145x + 12 = 0=> 12x2- 144x - x + 12 = 0=> 12x(x - 12) - 1(x - 12) = 0=> (x - 12)(12x - 1) = 0=> x = 12 and x = 1/12as X is integer x can\'t be 1/12Therefore the required integer is 12
Let the integer be x.x + 1/x = 145/1212x2\xa0- 145x + 12 = 012x2\xa0- 144x - x + 12 = 012x(x - 12) - 1(x - 12) = 0(x - 12)(12x - 1) = 0x = 12 and x = 1/12Therefore the required integer is 12.
11413.

Which term of AP 121,117,113.................is its first negative term

Answer» a = 121d = -4let an= 0thenan\xa0= a + (n-1)d=> 0 = 121 + (n-1)(-4)=> 0 = 121 - 4n + 4=> 4n = 125=> n = 125/4=> n = 31.25as n must be natural number then n= 3232nd\xa0term is First negative number.a32\xa0= 121 + (31)-4= 121 - 124 = -3
11414.

an+1+bn+1/an+bn\xa0is the A.M between a and b, then find the value of n.\xa0

Answer» Ans.\xa0As we knowA.M. of two numbers a and b = (a+b)/2So(an+1\xa0+ bn+1)/(an+bn) = (a+b)/2=> 2(an+1+bn+1) = (a+b)(an+bn)=> 2an+1\xa0+ 2bn+1\xa0= an+1\xa0+ abn\xa0+ ban\xa0+ bn+1=> an+1\xa0- ban\xa0+ bn+1\xa0- abn\xa0= 0=> an(a-b) + bn( b-a) = 0=> an(a-b) -\xa0bn(a-b) = 0=> an(a-b) = bn(a-b)=> an/bn\xa0= 1=> (a/b)n\xa0= (a/b)0=> n =0value of n = 0
According to question,an+1+bn+1/an+bn\xa0= (a + b) / 2=> 2(an+1 + bn+1) = (a + b)(an + bn)=> 2an+1 + 2bn+1 =\xa0an+1 + abn + anb + bn+1=> an+1\xa0-\xa0anb +\xa0bn+1 - abn = 0=> an\xa0(a -\xa0b) - bn (a - b)= 0=> (an\xa0-\xa0bn)(a- b)= 0=> (an\xa0-\xa0bn) = 0=> an\xa0= bn=> (an/bn) = 1=> (a/b)n = (a/b)0=> n = 0\xa0\xa0\xa0
11415.

If the sum of first p terms of an ap ap2 + bq find its common difference

Answer» Given: Sp\xa0= ap2\xa0+ bqS1\xa0= a = a(1)2\xa0+ bq = a + bqS2\xa0= a + a2\xa0= a(2)2\xa0+ bq = 4a + bqThen,,. a2\xa0= 4a + bq - a - bq = 3aTherefore, common difference = a2 - a = 3a - a - bq = 2a - bq
Ans. Sp\xa0= ap2+ bqPutting p= 1, we \'ll get some of first one term or first term itselfa1 = a(1)2+ bq\xa0=> a1\xa0= a + bqPutting p=2 we \'ll get sum of first two terms I.e a1+a2S2 = a(2)2 + bq\xa0= 4a+bqa2\xa0= S2-a2=> a2 = 4a + bq - a - bq = 3aCommon difference = a2-a1 = 3a-a-bq = 2a-bq
Given, ap\xa0= ap2\xa0+ bqThen,a = a(1)2\xa0+ bqa2\xa0= a(2)2\xa0+ bq = 4a + bqTherefore,\xa0Common difference = 4a + bq - a - bq = 3a
11416.

Find the sum of first n terms of an AP whose n th term is 5n-1.Hence find the sum of first 20 terms.

Answer» Ans.\xa0Let\xa0first\xa0term\xa0of\xa0A.P\xa0is\xa0a\xa0and\xa0common\xa0difference\xa0is\xa0d.Given\xa0:\xa0an\xa0=\xa05n-1So,\xa0a1\xa0=\xa05×1-1\xa0=4a2\xa0=\xa05×2\xa0-1\xa0=\xa09Common Difference (d) = 9-4 = 5Sum\xa0of\xa0first\xa0n\xa0terms\xa0Sn\xa0=\xa0n22×4\xa0+\xa0(n-1)\xa0×5=>\xa0Sn\xa0=\xa0n2(8\xa0+5n\xa0-\xa05)=>\xa0Sn\xa0=\xa0n23+5nSum\xa0of\xa0First\xa020\xa0Terms\xa0S20\xa0=\xa0202(3+5×20)\xa0=\xa010×\xa0103\xa0\xa0=1030
Given: an = 5n-1a = 5 x 1 - 1 = 5 - 1 = 4a2 = 5 x 2 - 1 = 10 - 1 = 9a3 = 5 x 3 - 1 = 15 - 1 = 14Therefore, AP is 4, 9, 14, .......Here, a = 4 and d = 5S20 = (20/2)[2 x 4 + (20 - 1) x 5] = 10 [8 + 95] = 10 x 103 = 1030Therefore, sum of 20 terms of given AP is 1030
11417.

solve for x by factorisation method. 3x2+√21x-14=0

Answer» Ans.\xa03x2+\xa021x\xa0-14\xa0=\xa00=>\xa03x2\xa0+\u2009221x\xa0-\xa021x\xa0-14\xa0=\xa00=>\xa03x(3x\xa0-27\xa0)\xa0-7(3x\xa0-\xa027)\xa0=\xa0\xa00\xa0=>\xa0(3x\xa0-7)(3x\xa0-\xa027)\xa0=\xa00Either\xa03x\xa0-\xa07\xa0=\xa00\xa0\xa0\xa0or\xa0\xa03x\xa0-\xa027\xa0=\xa00\xa0x\xa0=\xa073\xa0\xa0or\xa0\xa0273
3x2+21x-14=03x2+221x-21x-14=03x(3x+27)-7(3x+27)=0(3x+27)(3x-7)=03x+27=0\xa0and\xa03x-7=0x=-273\xa0and\xa0x=73
3x2 + 221x - 21x - 14 = 03x(3x+27)\xa0-\xa07(3x+27)(3x+27)\xa0(3x-7)3x+27\xa0=\xa00,\xa03x-7\xa0=\xa00x\xa0=\xa0-273=-273,\xa0x\xa0=\xa073=73
11418.

In construction , even if they have not mentioned , whether we have to write steps of construction??

Answer» Yes, mention steps of construction
Ans. Yes, Its a good habbit to Write steps of construction even if it has been asked or not.
11419.

What is date sheet of non board of class 10\xa0

Answer» Every school has different datesheet for Class 10 Non-boards. Most probably the exams will start either in first or second week of March. The school will provide you with the datesheet in the next few days.All the best !
11420.

In what ratio does the line x-y-2=0 divide the line joining the points A(3,-1) and B(8,9)?

Answer» Let the ratio be k : 1.The given points are A(3, -1) and B(8, 9).Then the coordinates of point of intersection are: m1x2+m2x1m1+m2,m1y2+m2y1m1+m2 = k×8+1×3k+1,\xa0k×9+1×-1k+1 = 8k+3k+1,\xa09k-1k+1Now, these coordinates is on the line x - y - 2 = 0Then putting the coordinates of intersection point in this line, we get8k+3k+1-9k-1k+1-2=0=> 8k+3-9k+1-2k-2=0=> -3k+2=0=> k=23Therefore, the required ratio is 2 : 3.
11421.

Solve the equation. 22x+3 is equal to 65(2x_2) + 122

Answer» 22x+3=65(2x-2)+1228.22x=65.22x-130+1228.22x=65.22x-88D2-65D+8=0(take D=2x)(D-8)(8D-1)=0(BY MID TERM FACTOR)THEN,D-8=0 OR 8D-1=0D=8 OR\xa0182x=8 OR\xa018x=3 or 1/3\xa0
11422.

A circle is inscribed in a triangleABC. If AB=12cm,AC=10cm,BC=8cm Find AD,BE and CF

Answer» Ans. Given : A Circle inscribed in A\xa0triangle ABCAB = 12cm, AC = 10cm, BC = 8cmWe Know that Tangent drawn from an external point are equal in length.\xa0Let AD = x\xa0Then AD = AE = x [Tangent from Same point]Similarly\xa0BD = BF = y\xa0CE = CF = z\xa0AB = AD + BD => x + y =\xa012 (1)AC = AE + EC\xa0=> x + z = 10 (2)BC = BF + FC=> y + z = 8 (3)Adding all three equations, we get2(x+y+z) = 30=> x + y + z = 15 (4)from (1) x + y = 12then z = 3 cmSimilarly y = 5 cm and z = 7cm
11423.

A circle is inscribed in a triangleABC If AB=12cm,AC=10cm,BC=8cm Find AD,BE and CF

Answer» Let AD be x cm, BE = y cm, CF = z cmThen, AD = AF = x cm [Since tangents from\xa0an external point to\xa0the circle\xa0are equal] BD = BE = y cm [Since tangents from\xa0an external point to\xa0the circle\xa0are equal] CE = CF = z cm [Since tangents from\xa0an external point to\xa0the circle\xa0are equal]According to question,AD + BD = 12 cm => x\xa0+ y = 12 ..........(i)BE + EC =\xa08 cm => y\xa0+\xa0z =\xa08 ..........(ii)CF + AC =\xa010 cm => x\xa0+\xa0z =\xa010 ..........(iii)Adding eq.(i), (ii) and (iii), we get2(x + y + z) = 30 => x + y + z = 15 ..........(iv)Solving eq. (iv) and (ii), we get x = 7 cm => AD = 7 cmSolving eq. (iv) and (iii), we get\xa0y =\xa05 cm => BE =\xa05 cmSolving eq. (iv) and (i), we get\xa0z =\xa03 cm => CF =\xa03 cm
Ans. Given : A Circle inscribed in A\xa0triangle ABCAB = 12cm, AC = 10cm, BC = 8cmWe Know that Tangent drawn from an external point are equal in length.\xa0Let AD = x\xa0Then AD = AE = x [Tangent from Same point]Similarly\xa0BD = BF = y\xa0CE = CF = z\xa0AB = AD + BD => x + y =\xa012 (1)AC = AE + EC\xa0=> x + z = 10 (2)BC = BF + FC=> y + z = 8 (3)Adding all three equations, we get2(x+y+z) = 30=> x + y + z = 15 (4)from (1) x + y = 12then z = 3 cmSimilarly y = 5 cm and z = 7cm
11424.

sector of circle explain\xa0

Answer» The region enclosed by an arc of the circle is called sector.
11425.

If a2,b2,c2\xa0are in A.P to prove that 1/b+c,1/c+a,1/a+b are in A.P

Answer» If a2, b2, c2\xa0are in AP, then2b2\xa0= a2\xa0+ c2\xa0b2\xa0+ b2\xa0= a2\xa0+ c2\xa0b2\xa0- a2\xa0= c2\xa0- b2\xa0(b - a)(b + a) = (c - b)(c + b)(b - a)/(c + b) = (c - b)/(b + a)Dividing both sides by (c + a),(b - a)/{(c + b)(c + a)} = (c - b)/{(b + a)(c + a)}{(b + c) - (c + a)}/{(b + c)(c + a) = {(c + a) - (a + b)}/{(a + b)(c + a)}{1/(c + a)} - {1/(b + c)} = {1/(a + b)} - {1/(c + a)}{2/(c + a)} = {1/(a + b)} - {1/(b + c)}Therefore 1/(a + b), 1/(b + c), 1/(c + a) are in AP.
Ans. Given : a2 b2 c2 are in A.P.To Prove :\xa0\\({1 \\over b +c } ,{1 \\over c+a}, {1\\over a+b} \\)\xa0Are in A.P.Proof :\xa02b2 = a2 + c2 [as a2 b2 c2 are in A.P.]=> b2 + b2 = a2 + c2=> b2 - a2 = c2 - b2\xa0=> (b-a) (b+a) = (c-b) (c+b)=>\xa0\\({(b-a) \\over (c+b) } = {(c-b) \\over (b+a)}\\)Divide both side by\xa0\\(1\\over (c+a)\\), We get\xa0=>\xa0\\({(b-a) \\over (c+b) \\times (c+a) } = {(c-b) \\over (b+a)\\times(c+a)}\\)=>\xa0\\({(b-a+c-c) \\over (c+b) \\times (c+a) } = {(c-b+a-a) \\over (b+a)\\times(c+a)}\\)=>\xa0\\({(b+c) - (c+a) \\over (c+b) \\times (c+a) } = {(c+a) -(a+b)) \\over (b+a)\\times(c+a)}\\)=>\xa0\\({1 \\over(c+a)} - {1\\over (c+b) } = {1\\over (a+b)} -{ 1\\over(c+a)}\\)=>\xa0\\({2 \\over(c+a)} = {1\\over (a+b)} + {1\\over (c+b) }\\)Hence by this equation we, can say that\xa0\\({1 \\over b +c } ,{1 \\over c+a}, {1\\over a+b} \\)are in A.P.
11426.

For an AP Sm=20 and Sn=10 and n-m=1,then prove that n=10÷a where a=d.

Answer» \\(I \\space think \\space in \\space question S_m = 10 \\space and \\space S_n = 20 \\)Ans. Given :\xa0\\(S_m = 10\\)\\(S_n = 20 \\space \\space \\space \\space ..... (1)\\)=> n-m = 1\xa0=> m = n-1\xa0The sum of m terms i.e (n-1) terms\xa0\\(S_{n-1} =S_m = 10 \\space \\space \\space \\space \\space \\space ...... (2)\\)=>\xa0\\(n^{th} term = S_n - S_{n-1}\\)=>\\(n^{th} term = 20 - 10 = 10\\)=>\xa0\\(a + (n-1)d = 10\\)=>\xa0\\(a + (n-1)a = 10 \\space \\space \\space \\space \\space [as \\space a =d ]\\)=>\xa0\\(a+ na -a = 10 \\)=>\xa0\\(na = 10 \\)=>\xa0\\(n = {10\\over a}\\)Hence proved
11427.

How to improve my minor mistake in maths.\xa0

Answer» Work without tension. Enjoy doing maths. Never think it as meri attma hamesha satayegee. Best of luck.\xa0
Practice maths for 3 hours daily with full concentration\xa0
11428.

The perimeter of a sector of a circle of radius 5.2 cm is 16.4 cm.find the area of a circle.

Answer» area of sector = 1/2*l*r = 1/2*6*5.2=3*5.2=15.6cm^2perimeter-radius=length of arc
11429.

The sum of the number and its reciprocal is 2 ×1/30.find the number

Answer» Let the number be x and its reciprocal be {tex}{1 \\over x}{/tex}According to the question{tex}x + {1 \\over x} = 2{1 \\over 30}{/tex}{tex}\\implies {x^2 +1 \\over x} = {61 \\over 30}{/tex}{tex}\\implies{/tex}30x2 - 61 x+30 = 0{tex}\\implies{/tex}30 x2 - 36x - 25x + 30 =0{tex}\\implies{/tex}6x ( 5x -6) - 5 (5x -6) = 0{tex}\\implies{/tex}(6x - 5) (5x - 6) = 0Either 6x - 5 = 0 or 5x - 6 = 0{tex}\\implies x = {5 \\over 6}, {6 \\over 5}{/tex}Hence, the required number is {tex}{5 \\over 6} \\,or \\,{6 \\over5}{/tex}
11430.

√x + y = 8√y + x = 24

Answer»
11431.

An unbiased die is thrown find probability of getting number between 1 and 4.

Answer» Number of outcomes in throwing a die : 6Number of favourable outcomes : 2 [ i.e. number b/w 1 and 4 are 2 and 3 only]P( getting a no. b/w 1 and 4) = 2/6\xa0= 1/3
11432.

Find the sum of the first 30 terms of an AP\xa0whose nth term is 2-3n?\xa0

Answer» an\xa0= 2-3nTo form an A.P. from it, substitute different values of\xa0na1\xa0= 2-3(1) = 2-3 = -1a2\xa0= 2-3(2) = 2-6 = -4a3\xa0= 2-3(3) = 2-9 = -7a4\xa0= 2-3(4) = 2-12 = -10-1 , -4 , -7 , -10 forms an A.P.The first term a = -1, common difference d = -4-(-1) = -4+1 = -3 , number of terms n =30S30 =\xa0\\({ n \\over 2}\\)\\({[ 2a+ (n-1) d]}\\)= 15 [ -2 + 29 X -3]= 15[-89]S30= -1335
11433.

determine the condition for the roots of the equation ax2 +bx +c= 0 to differ by 2

Answer» Ans. Let one root = xThen other root = x +2As We know,Difference of roots = \\(\\sqrt D \\over a\\)where D = b2-4ac\\(=> 2= {\\sqrt{b^2-4ac} \\over a}\\)\\(=> 2a= \\sqrt{b^2-4ac}\\)Squaring Both Sides We Get\\(=> 4a^2 = b^2 - 4ac\\)This is the required Condition.
11434.

in an AP the sum of the first 10 terms is -150. And the sum of next 10 terms is -550. Find the AP.

Answer» hence your ap series is -3,1,5,9,13,17............................\xa0
\xa0S10=150 here n=10 ;a=? ;d=?n/2{2a+(n-1)d}150=10/2{2a+9d}30=2a+9deq.1than for next 10th terms we can write S10+S10=150+550S20\xa0=700 than n=20700=20/2{2a+19d}eq.2subtract eq.1 and eq.2 we get\xa040=10dd=4put the value of d in eq.1 we get\xa030=2a+9*4a=-6\xa0\xa0
Ans. Let First Term = a\xa0Common difference = dSum of first 10 Terms S10\xa0= -150\xa0\\(=> S_{10} = {10\\over 2} [2a+ (10-1)d]\\)\\(=> -150 = 5 (2a+9d)\\)=>\xa0\\(2a+9d = -30\\) ........... (1)For Next 10 terms, 11th\xa0ll be first term,\\(=> a_{11} = a + 10d\\)\\(=> S_{10} = {10\\over 2}[2\\times (a+10d) + (10-1)d]\\)\\(=> -550 = 5[2a+20d + 9d]\\)\\(=> 2a+29d = -110 \\) ........ (2)Subtract (1) from (2), we get=> 20d = -80\xa0=> d = -4\xa0Put value of d in(1) we , get\xa0=> a = 3AP : 3 , -1, -5, -9, ........
11435.

how many terms of the AP 9,7,25..... must be taken to give a sum of 636

Answer» it ll be 17 in place of 7.Ans. First Term (a) = 9Common Difference (d) = 17-9 = 8\xa0Sn\xa0= 636We Know\\(=> S_n = {n\\over 2}[2a+(n-1)d]\\)\\(=> 636= {n\\over 2}[2\\times 9 +(n-1)8]\\)\\(=> 636= {n\\over 2}[18 +8n-8]\\)\\(=> 636= {n\\over 2}[10 +8n] => 636=n[5 +4n]\\)=> 4n2 + 5n - 636 = 0=> 4n2 + 53n - 48n - 636 = 0=> n (4n+53) - 12(4n+ 53) = 0=> (4n+53) (n-12) = 0Either 4n + 53 = 0 or n -12 = 0n = (-53\\4) or 12\xa0Number of terms = 12\xa0
11436.

Quardic equation\xa0(x+1)(x+2)(x+3)(x+4)-8=0

Answer»
11437.

ABCD is a cyclic quadrilateral if

Answer» 70o
11438.

Find the probability of 53 Sundays in one leap year

Answer» the correct answer is 1/7 \xa0
1/7
It\'s 2/7
11439.

If the length of the shadow is 60 m high is 20√2 find sun\'s altitude

Answer»
11440.

Wt is d probability of getting 5 friday n 5 saturday in month of March\xa0\xa0

Answer»
11441.

Find the area of the largest triangle that can inscribe in a semicircle of radius 21cm\xa0

Answer» The area of triangle =1/2. ×. base ×. height Where base= 42 diameter of the\xa0 circle And. Height = 21 radius. of the circle perpendicular to diameter\xa0Answer =. 441\xa0
11442.

Which term of the A.P. 20,77/4,37/2,75/4,..........is the first negative term?Find the term also.

Answer» The given AP is 20,\xa0{tex}19 \\frac { 1 } { 4 } , 18 \\frac { 1 } { 2 } , 17 \\frac { 3 } { 4 } , \\dots{/tex}common difference ={tex}19 \\frac { 1 } { 4 } - 20 = \\frac { 77 } { 4 } - 20 = \\frac { - 3 } { 4 }{/tex}the general term of an AP is given byan\xa0=a+(n-1)d<0{tex}\\Rightarrow{/tex}\xa0a+(n-1)d<0{tex}\\Rightarrow{/tex}\xa020+(n-1)({tex}\\frac{{ - 3}}{4}{/tex})<0{tex}\\Rightarrow{/tex}\xa020-{tex}\\frac{{3n}}{4}{/tex}+{tex}\\frac{3}{4}{/tex}<0{tex}\\Rightarrow{/tex}\xa0-\u200b\u200b\u200b\u200b\u200b\u200b{tex}\\frac{{3n}}{4}{/tex}+{tex}\\frac{{83}}{4}{/tex}<0{tex}\\Rightarrow{/tex}\xa0-3n+83<0{tex}\\Rightarrow{/tex}\xa0-3n< -83{tex}\\Rightarrow{/tex}\xa0n>{tex}\\frac{{83}}{3}{/tex}{tex}\\Rightarrow{/tex}\xa0n> 27.6So, n=28a28\xa0= a + 27d = 20 + 27\xa0{tex}\\times \\frac{-3}{4}{/tex}= -0.25Hence, the first negative term would be the 28th term.\xa0
11443.

Along a road lie an odd no. Of stones..............rd example 34 ..........

Answer» Wrong question\xa0Give a clear data and a clear question
11444.

draw a line segment of length 7cm. Find a point P on it which divides it in the ratio 3:5

Answer» We have to draw a line segment of length 7 cm.Then,we have to find a point P on it, which divides it in the ratio 3 : 5.Steps of construction:\tDraw a line segment {tex}AB=7{/tex} cm.\tDraw a ray AX, making an acute {tex}\\angle BAX{/tex} with AB.\tMark {tex}3+5=8{/tex} points, i.e, {tex}A_1, A_2, A_3, A_4 ...A_8{/tex} on AX, such that {tex}AA_1 = A_1A_2 = A_2A_3 = A_3A_4 ... = A_7A_8{/tex}\tJoin A{tex}_8{/tex}B\tFrom A3, draw {tex}A_3P || A_8B{/tex} which intersects AB at point P [ by making an angle at A3 equal to {tex}\\angle AA_8B{/tex}\xa0\tThen, P is the point on AB which divides it in the ratio 3:5. So, {tex}AP : PB = 3:5{/tex}Justification: In {tex}\\triangle ABA_8{/tex}, we have {tex}A_3P || A_8B{/tex}\xa0{tex}\\therefore \\frac{AP}{PB}=\\frac{AA_3}{A_3A_8}{/tex} [ by basic proportionality theorem]By construction, {tex}\\frac{AA_3}{A_3A_8}=\\frac{3}{5}{/tex}\xa0Hence, {tex}\\frac{AP}{PB}=\\frac{3}{5}{/tex}
11445.

The common tangents AB and CD to two circles O and O\' intersecct at E . Prove that AB =CD.\xa0

Answer» It isEA\xa0and EC are the tangents of circle with centre O soEA=EC (Tangents drawn from the external point of circle are equal)-1NowSimilarly,ED and EB are the tangents of circle with centre O\' soEB=ED (Tangents drawn from external point of circle are equal)-2Adding 1 and 2EA+EB=EC+EDAB=CD
11446.

In an ap , the sum of first n terms is 3n2/2 + 13n/2 . Find the 25th\xa0\xa0term.

Answer» Sn\xa0= 3n2/2 + 13n/2S1\xa0= a = 3/2 + 13/2 = 8S2\xa0= a + a2\xa0= 12/2 + 26/2 = 19a2\xa0= 19 - 8 = 11Then,. d = 11 -8 = 3Now, a25\xa0= a +(25 - 1)d= 8 + 24 × 3= 80The 25th term is 80
11447.

The mid point of the line segment joining (2a,4) and (-2,2b) is (1,2a+1).find the value of b?

Answer» Midpoint of two given points are\xa0{(x1\xa0+ x2)/2, (y1\xa0+ y2)/2}According to question,(2a - 2)/2 = 12a - 2 = 22a = 4a = 2Again, (4 + 2b)/2 = 2a + 14 + 2b = 4a + 22b = 4 × 2 + 2 - 42b = 8 - 2b = 3
Mid point = (x1+x2)/2 ; (y1+y2)/21 = (2a+1)/22 = 2a+12a = 1a =1/22a+ 1 = (4+2b)/24a+2 = 4 +2b4a-2 = 2b2a-1 = b1 - 1 =bb=0
11448.

If one root of the quadratic equation is 3+2root5/4 then what will be the other root

Answer»
11449.

if one root of the quadratic equation is 3+2root5/4.then find the other root\xa0

Answer» According to the question,\xa0One of the\xa0roots of the quadratic equation =\xa0{tex}\\frac { 3 + 2 \\sqrt { 5 } } { 4 }{/tex}{tex}\\because{/tex}\xa0Coefficient are rational{tex}\\therefore{/tex}\xa0other root of the equation\xa0will be\xa0{tex}\\frac { 3 - 2 \\sqrt { 5 } } { 4 }{/tex}\xa0(If coefficient are rational, then the roots are always conjugate rational)
11450.

If 4 times the fourth term og an AP is equal to 18 times its 18th term find its 22 term

Answer» Solution: let first term = acommon difference = dATQ.=> 4a4= 18a18=> 4 (a+3d) = 18(a+17d)=> 4a + 12d = 18a + 306d=> 14a - 294d = 0divide by 14=> a+21d = 0=> a+(22-1)d =0=> a22\xa0= 0so 22th term is 0\xa0