Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11601.

Prove that altitude of triangle are concurrent

Answer»
11602.

The first 3 terms of an ap are respectively (3y-1), (3y+5) and (5y+1) find your.

Answer» In given AP,\xa0{tex}{a_2} - {a_1} = {a_3} - {a_2}{/tex}3y + 5 - 3y + 1 = 5y + 1 - 3y - 5=> 6 = 2y - 4=> y = 5Then the given AP will be 14, 20, 26, .....Here common difference is 20 - 14 = 6Thereforem the fourth term is 26 + 6 = 32
The first three terms (3y—1), (3y+5) and (5y+1) are in A.P, so the common difference will be sameThat is d1=d2(3y+5)—(3y—1) = (5y+1)—(3y+5)3y+5—3y+1=5y+1—3y—56=2y—46+4 =2y10=2y5=y
Given an AP in whicha1 = 3y - 1a2 = 3y + 5a3 = 5y + 1we know that term 2 - term 1 = term 3 - term 2 = common difference d a2 - a1 = a3 - a2 3y + 5 - 3y + 1 = 5y + 1 - 3y - 5 6 = 2y - 4 10 = 2y y = 5
11603.

What is trignometry ratio

Answer» Trigonometric ratios relate\xa0to the sides of a right angled triangle to\xa0its angles.specifically they are\xa0ratio of two sides of a right angled triangle and a\xa0related angle.They are used to calculate the unknown lengths or angles in a right angled triangle.\xa0e.g. let us consider a triangle ABC right Ld at B AC = hypotenuse , BC = side opposite L\xa0A , AB = adjacent side of LA\xa0then Sin A = BC / AC Cos A = AB / AC tan A = BC / AB
Trigonometry ratio is the ratio of sides of the different sides of a right angled triangle
11604.

If the equation (1+m×m) x×x + 2mcx= 0has equal root, prove that c× c =a×a (1+m×m

Answer» Here roots are equal,{tex}\\therefore {/tex}\xa0{tex}D = B ^ { 2 } - 4 A C = 0{/tex}Here,\xa0{tex}A = 1 + m ^ { 2 } , B = 2 m c , C = \\left( c ^ { 2 } - a ^ { 2 } \\right){/tex}{tex}\\therefore {/tex}\xa0{tex}( 2 m c ) ^ { 2 } - 4 \\left( 1 + m ^ { 2 } \\right) \\left( c ^ { 2 } - a ^ { 2 } \\right) = 0{/tex}or,\xa0{tex}4 m ^ { 2 } c ^ { 2 } - 4 \\left( 1 + m ^ { 2 } \\right) \\left( c ^ { 2 } - a ^ { 2 } \\right) = 0{/tex}or,\xa0{tex}m ^ { 2 } c ^ { 2 } - \\left( c ^ { 2 } - a ^ { 2 } + m ^ { 2 } c ^ { 2 } - m ^ { 2 } n ^ { 2 } \\right) = 0{/tex}or,\xa0{tex}m ^ { 2 } c ^ { 2 } - c ^ { 2 } + a ^ { 2 } - m ^ { 2 } c ^ { 2 } + m ^ { 2 } a ^ { 2 } = 0{/tex}or,\xa0{tex}- c ^ { 2 } + a ^ { 2 } + m ^ { 2 } a ^ { 2 } = 0{/tex}or,\xa0{tex}c ^ { 2 } = a ^ { 2 } \\left( 1 + m ^ { 2 } \\right){/tex}Hence Proved.
11605.

If ß and alfa are zeroes of a pllynomial x2_4x+3 verify the relation between zeroes and coefficient?

Answer» {tex}\\alpha{/tex}\xa0and β are the zeroesThe given quadratic equation is x2—4x+3Here, a=1, b=—4, c=3By coefficient,Sum of zeroes=\xa0{tex}—b\\over a{/tex}{tex}\\alpha+β={/tex}{tex}—(-4)\\over1{/tex}=4Product of zeroes =\xa0{tex}c\\over a{/tex}{tex}\\alphaβ={3\\over1}{/tex}=3Now, x2—4x+3=0x2—3x—x+3=0x(x—3)—1(x—3)=0(x—1)(x—3)=0Either , x—1=0 or, x—3=0 The zeroes are x=1 or 3Sum of zeroes = 1+3=4Product of zeroes = 1{tex}\\times{/tex}3=3Proved
11606.

Prove that 3+√5 is irrational ?

Answer» Let √3+√5 be any rational number xx=√3+√5squaring both sides x²=(√3+√5)²x²=3+5+2√15x²=8+2√15x²-8=2√15(x²-8)/2=√15as x is a rational number so x²is also a rational number, 8 and 2 are rational nos. , so √15 must also be a rational number as quotient of two rational numbers is rational but, √15 is an irrational number so we arrive at a contradiction tthis shows that our supposition was wrong so √3+√5 is not a rational number
11607.

Rs aggarwal total q solve

Answer»
11608.

Find the coordinates of the point which divides the join of (-1,7) and (-4,3) in the ratio 2:3.

Answer» Let the co ordinate of the point (x,y)x={tex}mx2+nx1\\over m+n{/tex}={tex}2\\times(-4)+3\\times(-1)\\over2+3{/tex}={tex}-8-3\\over5{/tex}={tex}-11\\over5{/tex}y={tex}my2+ny1\\over m+n{/tex}={tex}2\\times3+3\\times7\\over2+3{/tex}={tex}6+21\\over5{/tex}={tex}27\\over5{/tex}The coordinate of the point is ({tex}-11\\over5{/tex},{tex}27\\over5{/tex})
(-1,7) (-4,3)√(-4+1)+(3+7)√(-3)+(4)√1
11609.

The first term of an AP is p and its common difference is q . Find its 10th term?

Answer» First term = p , common difference = q10th term = a+ (10—1)d = a+9d = p+9q
11610.

Describe completing the square

Answer»
11611.

Find the smallest number which when divided by 28 and 32 leaves remainder 8 and 12 respectively.

Answer» divisor is 28 and remainder is 8. Difference is 20 (28-8)divisor is 32 and remainder is 12. Difference is 20 (32-12)You can see that the difference is 20 in both the cases.LCM of divisors - difference ,or, LCM (28, 32) - 20 = 224 - 20 = 204So, the number is 204
11612.

(X+Y)/XY= 2 ,(X-Y)/XY=6 solve by cross multiplication method

Answer» {tex}{{x + y} \\over {xy}} = 2{/tex} => {tex}{1 \\over x} + {1 \\over y} = 2{/tex} => {tex}p + q = 2{/tex} .....(i) [Let\xa0{tex}p = {1 \\over x},q = {1 \\over y}{/tex}]And {tex}{{x - y} \\over {xy}} = 6{/tex} => {tex}{1 \\over x} - {1 \\over y} = 6{/tex} => {tex}p -q = 6{/tex} .....(ii) [Let\xa0{tex}p = {1 \\over x},q = {1 \\over y}{/tex}]{tex}{p\\over {{b_1}{c_2} - {b_2}{c_1}}} = {q \\over {{c_1}{a_2} - {c_2}{a_1}}} = {{ - 1} \\over {{a_1}{b_2} - {a_2}{b_1}}}{/tex}=> {tex}{p \\over {1 \\times 6 - \\left( { - 1} \\right) \\times 2}} = {q \\over {2 \\times 1 - 6 \\times 1}} = {{ - 1} \\over {1 \\times \\left( { - 1} \\right) - 1 \\times 1}}{/tex}=> {tex}{p \\over 8} = {q \\over { - 4}} = {{ - 1} \\over { - 2}}{/tex}Taking {tex}{p \\over 8} = {1 \\over 2}{/tex} => {tex}p = 4{/tex}Taking\xa0{tex}{q \\over { - 4}} = {1 \\over 2}{/tex} => {tex}q = - 2{/tex}{tex}4 = {1 \\over x}, - 2 = {1 \\over y}{/tex} => {tex}x = {1 \\over 4},y = {{ - 1} \\over 2}{/tex}
11613.

How many terms of the A.P:24,21,18,........multiple be taken so that their sum is 78?

Answer» Here a = 24, d = 21\xa0- 18\xa0= - 3, Sn\xa0= 78Sn= {tex}\\frac n2{/tex}[2a + (n - 1)d]{tex}\\therefore \\frac n2{/tex}[2(24) + (n - 1)(-3 )] = 78{tex}\\therefore \\frac n2{/tex}[48\xa0+ (n - 1)(-3 )] = 78or, n(48\xa0-3 n+ 3) = 0or, n(- 3n + 48) = 0or, n = 0 and -3n + 48\xa0= 0-3n = -48n = 48/3 = 16n = 16
11614.

Can anybody tell me about similar triangles?

Answer»
11615.

Nidhi saves, Rs 2 on day 1, Rs 4 on day 2 and Rs6 on day 3 how much money she saves in February 2011

Answer»
11616.

I Nidhi saves

Answer» What is your question??
11617.

If a cos^3 theta +3a cos theta sin ^2 theta =m

Answer»
11618.

Sample paper for 2017 2018 provide karaiye

Answer» Check Sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
11619.

Elimination method

Answer» The elimination method of solving systems of equations is also called the addition method. To solve a system of equations by elimination we transform the system such that one variable "cancels out".
11620.

Why we add 1 in converse of theorem in triangle

Answer»
11621.

Solution of Ch-Triangle Ex-6.3 Q14 is wrong in your ncert solution.Correct this solution

Answer» Given :∆ABC and ∆PQR, AD and PM are mediansBD= BC/2 and QR = QR/2So, AB/PQ = AC/PR=AD/PMTo prove:∆abc ~∆pqrConstruction:ad extended upto e and PM extended upto L.join be,CE,ql and elAd=de and PM=mlBD=DC and QM=mrTherefore,abce and pqrl are ||gramAb=CE and AC=be PQ= elPr=qlIn ∆abe and ∆pqlAb/PQ=BC/QR=ad/pmAb/PQ=BC/2×2/QR=2ad/2pmAb/PQ=bd\\qm=ae/pl∆abe~∆pql by SSS ruleangle bae=angle qpl (equation first)Similarly ∆ace~∆prlTherefore angle cae=RPL (equation second)Adding equation first and secondAngle bae + cae=angle qpl+RPLAngle bac = Apr (equation third)In ∆abc and ∆pqrAngle bac =qpr from equation thirdAB/PQ=BC/QR (given)Therefore ∆ABC ~∆PQR (SAS)Proved
11622.

Ncert ex 12.2 Q 6 with explanation anyone please help

Answer» Here, Area of equilateral triangle =\xa0{tex}{{\\sqrt 3 } \\over 4}{\\left( {{\\rm{Side}}} \\right)^2}{/tex}=\xa0{tex}{{\\sqrt 3 } \\over 4}{\\left( {{\\rm{15}}} \\right)^2}{/tex}\xa0= 97.425 sq. cmArea of circle =\xa0{tex}\\pi {r^2} = \\pi {\\left( {15} \\right)^2}{/tex}\xa0= 706.5 sq. cmArea of minor sector =\xa0{tex}{1 \\over 6} \\times 706.5{/tex}\xa0= 117.75 sq. cmTherefore, Area of minor segment = 117.75 - 97.425 = 20.325 sq. cmAnd, Area of major segment = 706.5 - 20.325 = 686.175 sq. cm
11623.

What is bpt

Answer» Basic Proportionality Theorem (Thales theorem): If a line is drawn parallel to one side of a triangle intersecting other two sides, then it divides the two sides in the same ratio.
11624.

12x+5y=35

Answer»
11625.

What is pie

Answer» The correct spelling is "Pi".The number π is a mathematical constant, the ratio of a circle\'s circumference to its diameter, commonly approximated as 3.14.
11626.

If tan A+ cot A= 2 then find the value of tan2 A + cot2 A

Answer» I don\'t know
11627.

SinA+cosA

Answer»
11628.

Plese tell me important question for10 class in all chapters

Answer»
11629.

Half yearly exam\'s marks will add in final result or not plz tell

Answer» No
11630.

Ex 12.2 Q no.7 plz tell solution with explanation plz help

Answer»
11631.

If x=3 ,y=9-3, find (x^2+y^2)xy+3xy

Answer» 774
11632.

Who made the subject Mathematics.please tell his name and adsress

Answer» Address- heaven. You will have to die.
Maths in India emerged in 1200 BCE. It was brought by Aryabhatta, Brahmagupta, Mahavira , Bhaskara II , Madhava of Sangamagrama and Nilkantha Somayaji.
11633.

The least positive integer n for which underroot n+1-UNDERROOT n-1

Answer» Let us assume that there is a positive integer n for {tex}\\sqrt{n-1}+\\sqrt{n+1}{/tex}which is rational and equal to {tex}\\frac pq{/tex}, where p and q are positive integers and (q\xa0{tex}\\neq{/tex}\xa00).{tex}\\sqrt { n - 1 } + \\sqrt { n + 1 } = \\frac { p } { q }{/tex}......(i)or,\xa0{tex}\\frac { q } { p } = \\frac { 1 } { \\sqrt { n - 1 } + \\sqrt { n + 1 } }{/tex}on multiplication of numerator and denominator by\xa0{tex}\\sqrt{n-1}-\\sqrt{n+1}{/tex}\xa0we get{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( \\sqrt { n - 1 } + \\sqrt { n + 1 } ) ( \\sqrt { n - 1 } - \\sqrt { n + 1 } ) }{/tex}{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( n - 1 ) - ( n + 1 ) } = \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { - 2 }{/tex}or,\xa0{tex}\\sqrt { n + 1 } - \\sqrt { n - 1 } = \\frac { 2 q } { p }{/tex} ........(ii)On adding (i) and (ii), we get{tex}2 \\sqrt { n + 1 } = \\frac { p } { q } + \\frac { 2 q } { p } = \\frac { p ^ { 2 } + 2 q ^ { 2 } } { p q }{/tex}{tex}\\sqrt{n+1}\\;=\\frac{p^2+2q^2}{2pq}{/tex}...............(iii)From (i) and (ii),{tex}\\style{font-family:Arial}{\\sqrt{n-1}\\;=\\frac{p^2-2q^2}{2pq}}{/tex}........(iv)In RHS of (iii) and (iv)\xa0{tex}\\frac{p^2+2q^2}{2pq}\\;and\\;\\frac{\\displaystyle p^2-2q^2}{\\displaystyle2pq}\\;are\\;rational\\;number\\;because\\;p\\;and\\;q\\;are\\;positive\\;integers{/tex}But it is possible only when (n + 1) and (n - 1) both are perfect squares.Now n+1-(n-1)=n+1-n+1=2Hence they differ by 2 and two perfect squares never differ by 2.So both (n + 1) and (n -1 ) cannot be perfect squares. Hence there is no positive integer n for which\xa0{tex}\\style{font-family:Arial}{\\sqrt{n-1\\;}+\\sqrt{n+1}}{/tex} is rational
11634.

Triangle

Answer»
11635.

How to prove that root 2 is irrational

Answer» Let us assume that √2\xa0is rational.That is, we can find integers a and b (≠0) such that\xa0a and b are co-prime{tex}\\style{font-family:Arial}{\\begin{array}{l}\\sqrt2=\\frac ab\\\\b\\sqrt2=a\\\\on\\;squaring\\;both\\;sides\\;we\\;get\\\\4b^2=a^2\\end{array}}{/tex}Therefore, a2 is divisible by 2,\xa0it follows that a is also divisible by 2.So, we can write a = 2c for some integer c.Substituting for a, we get 2b2 = 4c2, that is, b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 2c2This means that b2 is divisible by 2, and so b is also divisible by 2\xa0Therefore, a and b have at least 2\xa0as a common factor.But this contradicts the fact that a and b are co-prime.This contradiction has arisen because of our incorrect assumption that √2\xa0is rational.So, we conclude that √2\xa0is irrational.
11636.

Sin 45

Answer»
11637.

What will be the roots of this quadratic equation x2 -3x =0

Answer» x2-3x=0x(x-3)=0 [by taking x common]x=0 or x-3=0x=0 x=3So roots of the given quadratic equation are x= 0 and x= 3.
11638.

Show that (A-B)^2,(A^2+B^2),(A+B)^2 is an AP

Answer» To Prove (A-B)2\xa0,A2+B2 and (A+B)2\xa0is in an AP, We need to show that the difference between the terms are equal.Let a1= (A-B)2 a2=A2\xa0+B2 and a3= (A+B)2Now a2-a1\xa0=\xa0A2\xa0+B2\xa0-\xa0(A-B)2\xa0 and a3\xa0- a2\xa0=(A+B)2\xa0- (A2\xa0+ B2) = A2+B2\xa0-(A2\xa0-2AB+B2) =A2+2AB+B2\xa0-A2\xa0- B2 = A2\xa0+B2\xa0- A2\xa0+2AB - B2 = 2AB = 2ABClearly a2-a1\xa0= a3\xa0- a2\xa0= 2ABSo given terms are in AP with common difference d= 2AB
121221112111111111111111111111111
11639.

Find HCF of 96and 404 by prime factors method.

Answer» Prime factor of 96 is 2,2,2,2,2,3Prime factor of 2,2,101HCF=2,2
11640.

4+5

Answer»
11641.

If sinthitha- costhitha+1/sinhitha-costhitha+1 = tanthitha- cosecthitha

Answer»
11642.

What is EUCLID LEMMA

Answer» It is a division where,we can write in the form of a=bq+r where,0< or= to r
11643.

Prove that root5irrational

Answer» Let us assume that √5 be rational √5= p/q. ( where p and q are integers ,q is not equal to 0, p,q donot have common factor). 1.. √5square= p/q square . 5=p square/q square . 5 is a factor of p square 5 is a factor of p P is multiple of 5 Let p be 5K 5q square=5K whole square . 5q square =25K square. q square=5 k square. 5 is a factor of q square. 5 s factor of q...........3. From 2....3...... p and q have a common factor......4.
11644.

Find the pair of natural numbers whose lcm is 78 and greatest divisor is 13

Answer» LCM = 78GCD = 13 (greatest common divisor)LCM X GCD = 78 X 13 = 1014or 2 X 3 X 13 X 13since 13 is GCD , therefore 13 should be multiple of both numbers\xa0so the numbers are 2 x 13 and 3 x 13 or 26 , 39\xa0
39 and 26
11645.

If a+b+c=1 a^2+b^2+c^2=2 a^3+b^3+c^3=3Then find the value of , a^4+b^4+c^4.

Answer» \xa0{tex}{\\left( {a + b + c} \\right)^3} = {a^3} + {b^3} + {c^3} + \\left( {a + b + c} \\right)\\left( {ab + bc + ca} \\right){/tex}=> {tex}{\\left( 1 \\right)^3} = 3 + \\left( 1 \\right)\\left( {ab + bc + ca} \\right){/tex}=> {tex}ab + bc + ca = - 2{/tex}Squaring both sides, we get{tex}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} + 2abc\\left( {{a^2} + {b^2} + {c^2}} \\right) = 4{/tex}=> {tex}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} + 4abc = 4{/tex}=> {tex}{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} = 4 - 4abc{/tex} ..............(i){tex}{a^2} + {b^2} + {c^2} = 2{/tex}Squaring both sides, we get=> {tex}{a^4} + {b^4} + {c^4} + 2\\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \\right) = 4{/tex}=> {tex}{a^4} + {b^4} + {c^4} + 2\\left( {4 - 4abc} \\right) = 4{/tex} [From eq.(i)]=> {tex}{a^4} + {b^4} + {c^4} + 8 - 8abc = 4{/tex}=> {tex}{a^4} + {b^4} + {c^4} = - 4 + 8abc{/tex} ..................(ii)Now, using one result,\xa0{tex}6abc = {\\left( {a + b + c} \\right)^3} + 2\\left( {{a^3} + {b^3} + {c^3}} \\right) - 3\\left( {a + b + c} \\right)\\left( {{a^2} + {b^2} + {c^2}} \\right){/tex}=> {tex}6abc = {\\left( 1 \\right)^3} + 2\\left( 3 \\right) - 3\\left( 1 \\right)\\left( 2 \\right){/tex}=> {tex}abc = {1 \\over 6}{/tex}Putting this value in eq.(ii), we get{tex}{a^4} + {b^4} + {c^4} = - 4 + 8 \\times {1 \\over 6}{/tex}=> {tex}{a^4} + {b^4} + {c^4} = {{ - 8} \\over 3}{/tex}\xa0
11646.

What is the hcf of smallest composite number & smallest prime number ?

Answer» Ans is 2
Got the answer it\'s 4&2
2
11647.

How we can do solution of quadratic equation by method of completing the square

Answer» {tex}x^2 +\xa06x - 16 = 0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2 + 6x = 16{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2 + 6x + 9 = 16 + 9{/tex} [Adding on both sides square of coefficient of x, i.e. ({tex}\\frac{6}{2}{/tex})2]{tex}\\Rightarrow{/tex}\xa0{tex}(x + 3)^2 = 25{/tex}{tex}\\Rightarrow{/tex}\xa0x + 3 =\xa0{tex}\\pm{/tex}{tex}\\sqrt{25}{/tex}{tex}\\Rightarrow{/tex}\xa0x + 3 =5 or x + 3 = -5{tex}\\Rightarrow{/tex}\xa0x = 2 or x = -8
11648.

what are the advantage s of having four chamberd of heart

Answer» Advantages: oxygen rich blood and corbondioxide rich blood do not mix together. :It is easy to pump both the blood simntinously
Having a four chambered heart helps in easy circulation and also separates oxygenated blood from deoxygenated blood
11649.

4x square-2(k+1)x+k+4?

Answer»
11650.

is only ncert not sufficient for trignometry and some application of trignometry??.

Answer» Use full marks
Yes not sufficient. Use RS Agarwal last year edition have harder questions than new.
Use r.d.sharma for practise