Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11651.

Sec+tan=mSec-tan=nShow that mn=1

Answer» Given secA +tanA=m and secA-tanA=nTo prove:- mn=1L.H.S. mn=(secA+tanA)(secA-tanA) = sec2A - tan2A [by using identity (a+b)(a-b)=a2\xa0- b2 ] = 1+tan2A - tan2A [by using identity sec2A=1+tan2A ] = 1=R.H.S. H.Proved
11652.

Sin(1+tan)+cos(1+cot)=sec+cosec

Answer»
11653.

Find the root of x+1/x =3, x=o.Chapter : quadratic equation

Answer»
11654.

Find the value of k, so that the equation x2-(3k-1)+2k2+2k-11=0

Answer»
11655.

2x+2y=123x+3y=6

Answer» 2x+2y=12a1\xa0= 2 b1=2 c1= 123x+3y=6a2=3 b2= 3 c2=6a1/a2=2/3 b1/b2=2/3 c1/c2=2Therefore system of equations are inconsistent and have no solution.
11656.

What is the least number of zeroes possible for the given quadratic polynomial : ax²+bx+c ?

Answer»
11657.

What is electrolysis?

Answer»
11658.

What is fundamental theorem of arithmetic?

Answer»
11659.

Write the short note of dental caries

Answer»
11660.

What is cubic equation?

Answer»
11661.

What is prime number?

Answer» Prime number is\xa0a number that is divisible only by itself and 1 (e.g. 2, 3, 5, 7, 11).
11662.

What is rhombus ?

Answer» a Rhombus is a parallelogram in which a diagonal bisects an interior angleor a parallelogram in which at least two consecutive sides are equal in lengthor a quadrilateral with four sides of equal lengthor a quadrilateral in which the diagonals are perpendicular and bisect each other\xa0
11663.

SolveX2+x+3=0

Answer» 1
11664.

Number of zeroes of a polynomial of degree x is

Answer» 0
11665.

33%33

Answer» 33%33= 33/100 x 33= 1089/100= 10.89
11666.

How to prove triangle

Answer» If the area is not equal to zero than it is triangle or if sum of angles is180° we can say it is triangle
11667.

Log525

Answer» Log (525) = 2.72......Log10\xa0525 = Log 525 / Log 10 = 2.72... / 1 = 2.72........ .(as Log 10 = 1)
11668.

The total number of divisors of 10500 except 1 and itself is

Answer»
11669.

Property of triangle

Answer» Sum of angles is 180°
Tri
11670.

Easy way to memory formulae ??? How

Answer» Learn by heart
Revise every time
11671.

Prove theoram 6.1

Answer» I know
I don\'t no
11672.

Sin30/cos45+tan45/sec60-cos30/tan45-sin60/sin90

Answer» By putting the values,1/2÷1/√2+1/2-√3/2÷1-√3/2÷1=1/√2+1/2-√3=(2+√2-2√6)/2√2
11673.

What type of board paper is given to class 10

Answer» Check Question Papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
11674.

How will be the Question paper type can you give some hints type Question

Answer» Check Question Papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
11675.

Proof that -Sin2A +cos2A =1

Answer»
11676.

how many tanhents can a circle habe

Answer» A circle can have infinite number of tangents because there are infinite number of points on a circle
Only one perpendicular from radius
A circle can have infinite no of tangents
11677.

What is quadratic equations

Answer»
11678.

If the area of two similar triangles are equal then prove that the triangle are confident.

Answer» Given:{tex}∆ABC\\sim∆PQR{/tex}and\xa0{tex}ar∆ABC=ar∆PQR{/tex}To prove:\xa0{tex}∆ABC\\cong∆PQR{/tex}Proof:\xa0{tex}∆ABC\\sim∆PQR{/tex}\xa0Also\xa0{tex}\\operatorname { ar } ( \\Delta A B C ) = \\operatorname { ar } ( \\Delta P Q R ){/tex}\xa0(given)or,\xa0{tex}\\frac { \\operatorname { ar } ( \\Delta A B C ) } { \\operatorname { ar } ( \\Delta P Q R ) } = 1{/tex}Or\xa0{tex}\\frac{AB^2}{PQ^2}=\\frac{BC^2}{QR^2}=\\frac{CA^2}{RP^2}=1{/tex}Or\xa0{tex}\\frac{AB}{PQ}=\\frac{BC}{QR}=\\frac{CA}{RP}=1{/tex}Hence we get thatAB=PQ,BC=QR and\xa0CA=RPHence\xa0{tex}∆ABC\\cong ∆PQR{/tex}
11679.

Solve the equation: {2x-1/x+3}2{x+3/2x-1}=5, (x not equal to -3, 1/2

Answer» By the process of splitting the middle term we get x=_3,1/2
11680.

Rd sharma ex 8.3 question no 22 class10

Answer» Firstly we solve the equation by cross multiplication then the equation becomes x^2_4x_5 =0 then we solve it by splitting the middle term then the answer became x=5,_1
11681.

Test papers

Answer» Check test papers here :\xa0https://mycbseguide.com/cbse-test-papers.html
11682.

9a^2-56a+186=0Find a

Answer»
11683.

Find the value of p for which one root of the quadratic equation Px2 - 14x +8 is 6 times the other

Answer» Let\xa0{tex}\\alpha{/tex}\xa0and\xa0{tex}6\\alpha{/tex}\xa0be the roots of equation.We have, {tex}px^2-14x+8=0{/tex} where a= p, b = -14, c = 8Sum of zeroes{tex} = -\\frac ba = -\\frac{-14}{p}{/tex}{tex}\\alpha +6\\alpha=\\frac{14}{p}{/tex}{tex}7\\alpha = \\frac{14}{p}{/tex}{tex}\\alpha = \\frac2p{/tex}............(i)Also, Product of the zeroes\xa0{tex} = \\frac 8p=\\frac ca{/tex}{tex}\\alpha \\times 6\\alpha = \\frac 8p{/tex}{tex}6\\alpha^2=\\frac 8p{/tex}From (i){tex}6(\\frac{2}{p})^2=\\frac 8p{/tex}{tex}6\\times \\frac {4}{p^2}=\\frac 8p{/tex}{tex}\\frac{6}{p^2}=\\frac2p{/tex}{tex}\\frac 62=\\frac{p^2}{p}{/tex}{tex}Hence, \\ p=3{/tex}
11684.

Why root i2 I rational no.

Answer»
11685.

Sir in board exam all mean each and every question come from ncert book only or outside the book

Answer»
11686.

Find the coordinates of the equidistant from three given points A(5,3), B(5,-5) and C(1,-5).

Answer» Let the required points be P(x, y), thenPA = PB = PC. The points A, B, C are (5,3), (5, -5) and (1, -5) respectively{tex} \\Rightarrow{/tex}\xa0PA2\xa0= PB2\xa0= PC2{tex}\\Rightarrow{/tex}\xa0PA2 = PB2 and PB2 = PC2PA2 = PB2{tex}\\Rightarrow{/tex}\xa0(5 - x)2\xa0+ (3 - y)2\xa0= (5 - x)2\xa0+ (-5 -y)225 + x2\xa0- 10x + 9 + y2 - 6y = 25 + x2\xa0\xa0- 10x + 25 + y2\xa0+ 10y-6y - 10y = 25 - 9\xa0{tex}\\Rightarrow{/tex}\xa0-16y = 16y = -1and PB2 = PC2{tex}\\Rightarrow{/tex}\xa0(5 - x)2\xa0+ (-5 - y)2\xa0= (1 - x) + (-5 - y)225 + x2 - 10x + 25 + y2 + 10y = 1 + x2 - 2x + 25 + y2 + 10y-10x + 2x = -24\xa0{tex}\\Rightarrow{/tex}\xa0-8x = -24{tex}x = \\frac { - 24 } { - 8 } = 3{/tex}Hence, the point P is (3, -1)
11687.

Find distance between A(6,-2) B(3,4)

Answer» AB =\xa0{tex}\\sqrt { ( 3 - 6 ) ^ { 2 } + ( 4+2) ^ { 2 } } = \\sqrt{13}{/tex}
11688.

Find the value of p if the mean of the following distribution is 18

Answer»
11689.

TanA/1-cotA + cotA/1-tanA

Answer»
11690.

which is best book to solve

Answer» RD sharma
RS Agarwala is best
RD sharma for math
11691.

A.P

Answer»
11692.

4x+6y=3xy,8x+9y=5xy

Answer» Let us try to make 8x in both equationsTherefore multiply equation with 4x by 2 to make it = 8x2 x (4x + 6y = 3xy)8 x + 12 y = 6 xy .............. i8x + 9y = 5xy ....................... iii - ii3y = xy3 = xPutting the value of x in ii24 + 9y = 5x3y24 = 15y - 9y24 = 6yy = 4x = 3\xa0
Multiply 1st equation by 2Then subtract equation 2 from equation 1 ( multiplied by 2 )We will get x=3 and y=4
11693.

2×5

Answer» Very tough question what u asked do the sum on your own
10
10
11694.

Solve the equation x^2-(2-√3)x-2√3=0 by the method of completing the square

Answer»
11695.

Theorem triangle

Answer»
11696.

What is general form of polynomial

Answer» A polynomial is a function of the form f(x) = anxn + an−1xn−1 + ... + a2x2 + a1x + a0
11697.

Solve for2x+y=74x-3y=-1USING SUBSISTUTION METHOD

Answer» The given system of equations is2x + y = 7 ... (i)4x\xa0- 3y = -1. ...(ii)From (i), we get2x + y = 7⇒ y = (7 - 2x).Substituting y = (7 - 2x) in (ii), we get4x\xa0- 3y = -1⇒ 4x - 3 (7 - 2x) = - 1⇒ 4x - 21+ 6x = -1⇒ 10x - 21 = -1⇒ 10x = - 1 + 21⇒ 10x\xa0=\xa020⇒ x = 20/10⇒ x =\xa02.Substituting x = 2 in y = (7 - 2x), we gety = (7 - 2x)⇒ y = 7 - 2(2)⇒ y = 7 - 4⇒ y = 3.Hence, the solution is x = 2, y = 3.
tq
11698.

1+2+3+4+5

Answer» 15
15
15
15
11699.

88+88

Answer» 88+88=176
176
11700.

Gju

Answer»