Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11701.

Prove that( -)×(-)=(+)

Answer»
11702.

Trignometry

Answer» Trigonometry\xa0is a branch of mathematics that studies relationships involving lengths and angles of triangles
11703.

If the point P (x,y) is equidistant from the point a (5,1) b (1,5 )prove that x_ y

Answer» PA = PB (Given){tex}\\therefore {/tex}\xa0PA2 = PB2{tex} \\Rightarrow {/tex}\xa0(5 - x)2 + (1 - y)2 = (1 - x)2 + (5 - y)2{tex} \\Rightarrow {/tex}\xa025 + x2 - 10x + 1 + y2 - 2y = 1 + x2 - 2x + 25 + y2 - 10y{tex} \\Rightarrow {/tex}\xa0-8x = -10y + 2y{tex} \\Rightarrow {/tex}\xa0-8x = -8y{tex} \\Rightarrow {/tex}\xa0x = y\xa0
11704.

x-1/x-2+x-3/x-4=10/3

Answer» The given equation is{tex}\\frac { x - 1 } { x - 2 } + \\frac { x - 3 } { x - 4 } = 3 \\frac { 1 } { 3 } ( x \\neq 2,4 ){/tex}{tex}\\Rightarrow \\frac { ( x - 1 ) ( x - 4 ) + ( x - 3 ) ( x - 2 ) } { ( x - 2 ) ( x - 4 ) } = \\frac { 10 } { 3 }{/tex}{tex}\\Rightarrow \\frac { x ^ { 2 } - 4 x - x + 4 + x ^ { 2 } - 2 x - 3 x + 6 } { x ^ { 2 } - 4 x - 2 x + 8 } = \\frac { 10 } { 3 }{/tex}{tex}\\Rightarrow \\frac { 2 x ^ { 2 } - 10 x + 10 } { x ^ { 2 } - 6 x + 8 } = \\frac { 10 } { 3 }{/tex}{tex}\\Rightarrow 3 \\left( 2 x ^ { 2 } - 10 x + 10 \\right) = 10 \\left( x ^ { 2 } - 6 x + 8 \\right){/tex}{tex}\\Rightarrow 6 x ^ { 2 } - 30 x + 30 = 10 x ^ { 2 } - 60 x + 80{/tex}{tex}\\Rightarrow 4 x ^ { 2 } - 30 x + 50 = 0{/tex}{tex}\\Rightarrow ( 2 x ) ^ { 2 } - 2 ( 2 x ) \\left( \\frac { 15 } { 2 } \\right) + \\left( \\frac { 15 } { 2 } \\right) ^ { 2 } - \\left( \\frac { 15 } { 2 } \\right) ^ { 2 } + 50 = 0{/tex}{tex}\\Rightarrow \\left( 2 x - \\frac { 15 } { 2 } \\right) ^ { 2 } - \\frac { 225 } { 4 } + 50 = 0{/tex}{tex}\\Rightarrow \\left( 2 x - \\frac { 15 } { 2 } \\right) ^ { 2 } - \\frac { 25 } { 4 } = 0{/tex}{tex}\\Rightarrow 2 x - \\frac { 15 } { 2 } = \\pm \\frac { 5 } { 2 } \\Rightarrow 2 x = \\frac { 15 } { 2 } \\pm \\frac { 5 } { 2 }{/tex}{tex}\\Rightarrow 2 x = \\frac { 15 } { 2 } + \\frac { 5 } { 2 } , \\frac { 15 } { 2 } - \\frac { 5 } { 2 }{/tex}{tex}\\Rightarrow 2 x = 10,5 \\Rightarrow x = 5 , \\frac { 5 } { 2 }{/tex}Hence, the solutions of the given equation and 5 and {tex}\\frac { 5 } { 2 }{/tex}.
11705.

Solve by factorization 4x2+(a4-b4)+4a2x=1

Answer»
11706.

How we can write minus one\'s square is one

Answer» Hey sister I know that as well. But comparing the herons and mokutik formula how\'s that possible
But as per the!(÷€÷6*3-2=0).so what can u say now
Because (-1) *(-1)=1,as we all know the property -*-=+.
11707.

The sum of two zeros of the polynomial f ( x )=2x² + (p+3)x +5 is zero then the value of P is

Answer» – 3
11708.

Find the roots of equation 5xsquare-6x-2 by completing the square method

Answer» =(5x2-6x-2)×5=0=25x2-30x-10=0=[(5x)2]-2×[5x×3]+[(3)2]-(3)2-2=0=(5x-3)2-9-2=0=(5x-3)2=11=5x-3=+_√11=1st root=5x-3=+√11 =5x=3+√11 =x=3+√11/5=2nd root=5x-3=_√11 =5x=3-√11 =x=3-√11/5 Where 5x2 is 5x square and in step 3rd it\'s in the form of a2+b2 - 2ab
Nahi aata
11709.

Sin2a + cos2a =

Answer» 1
1
11710.

1÷x-1÷x-2=3, x not equal to 0, 2 find the roots

Answer»
11711.

What is area theorum

Answer»
11712.

sec50×sin40+cos40×cosec50=2 prove it

Answer» By LHS=sec50×sin40+cos40×cossec50 =sin90-40×sin90-40+sec90-50×sec90-40=1+1=2
11713.

√512

Answer» √2*2*2*2*2*2*2*2*2=16√2
11714.

Sin2¥+ cos2¥=???

Answer» 1?
11715.

My day shedule

Answer»
11716.

Find value of 2:7

Answer» 0.285
11717.

When the math\'s test paper will ve updated ?

Answer»
11718.

(2√2)2

Answer» 8
11719.

2+2%3

Answer» 2.67
11720.

If one root of the polynomial 5x square +13x +K is reciprocal of the other find the value of k

Answer»
11721.

Prove that √2+√3 is irrational

Answer»
11722.

Prove that cube root 6 is irrational

Answer» explain whyand are composite numbers1) 7×13×11+13 = 13 ( 7X11 + 1) = 13 ( 77+1) = 13X78 = 13x78x1 as it has more than two factors it is a composite number.2)\xa0(7×6×5×4×2×3×2×1)+3 = 3(\xa07×6×5×4×2×1 +1) = 3x1681x1 as it has more than two factors it is a composite number.
11723.

What is least positive integer divisible by 20 and 24

Answer» 480
11724.

explain why 7×13×11+13 and (7×6×5×4×2×3×2×1)+3 are composite numbers

Answer» 9.png (482×591)@ https://yho.com/bwqfm1
13(7×1×11)+1So as it is divisible by 13 which is a composite no. So the whole no. Will also be a composite no.U can do 2nd one urself
Because they have factors rather than 1
11725.

In triangle ABC angle C=3\'"angle B=2 (angle A+angle B),find the 3 angles?

Answer» NCERT question
11726.

Cot theta+cosec theta-1/cot theta-cosec theta+1

Answer» (cotA+cosecA-1)/(cotA-cosecA+1)=(cotA+cosecA-1)²/(cotA+cosecA-1)(cotA-cosecA+1)=(Cot²A+cosec²A+1+2cotAcosecA-2cotA-2cosecA)/(cot²A-cosec²A-1+2cosecA)={2cosec²A-2cosecA+2cotA(cosecA-1)}/(2cosecA-2)={2cosecA(cosecA-1)+2cotA(cosecA-1)}/2(cosecA-1)=2(cosecA-1)(cosecA+cotA)/2(cosecA-1)=cosecA+cotA
11727.

Find all the odd number between 30000 and 80000

Answer» Urself*
There are 2500odd no. b/w 3000&8000Find them all itself:p
11728.

How to divide point numerical

Answer»
11729.

How to find missing no. Of traingle in ntse question chapter 4, 8 question

Answer»
11730.

What is general form ki of linear in two variables

Answer» the general form of an equation of a straight line is ax + by +c = 0a or b can be zero , but not both at the same time
ax +by+c=0
11731.

Give the proof of quadratic formula

Answer» {tex}ax^2+bx+c=0{/tex}or,\xa0{tex}x^2+\\frac{{b}}{a}x+\\frac{{c}}{a}=0{/tex}or,\xa0{tex}x^2+\\frac{{b}}{a}x=−\\frac{{c}}{a}{/tex}or,\xa0{tex}x^2+\\frac{{b}}{a}x+\\frac{{b^2}}{4a^2}=\\frac{{b^2}}{4a^2}−\\frac{{c}}{a}{/tex}or,\xa0{tex}(x+\\frac{{b}}{2a})^2=\\frac{{b^2−4ac}}{4a^2}{/tex}or,\xa0{tex}x+\\frac{{b}}{2a}=\\frac{\\pm\\sqrt{b^2−4ac}}{2a}{/tex}or,\xa0{tex}x=-\\frac{{b}}{2a}\\pm\\frac{\\sqrt{b^2−4ac}}{2a}{/tex}or,\xa0{tex}x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}{/tex}\xa0
11732.

Find two consecutive multiple of 3 whose product is 483

Answer» Let the consecutive positive odd integers be x and (x + 2).According to question,{tex}x(x+2)=483{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2+2x-483=0{/tex}Factorise the equation{tex}\\Rightarrow{/tex}\xa0x2\xa0+ 23x - 21x - 483 = 0{tex}\\Rightarrow{/tex}\xa0x(x + 23) - 21(x + 23) = 0{tex}\\Rightarrow{/tex}\xa0x + 23 = 0 or x - 21 = 0{tex}\\Rightarrow{/tex}\xa0x = -23 or x = 21As, x is a positive integer, {tex}{/tex}{tex}\\Rightarrow{/tex}\xa0x = 21{tex}\\Rightarrow{/tex}\xa0x + 2 = 21 + 2 = 23Therefore, the consecutive positive odd integer are 21 and 23.
11733.

Which book should be followed for better results ij board xams

Answer» Golden guide, xam idea S. Chand, all in one, pradeep ncert textbook
Ncert book
11734.

Cos 90

Answer» Value of Cos 90=0
Cos 90=0
11735.

Can we write the distance formula like this √(x1-x2) + (y1-y2) ?in solving the problems

Answer» Yes you can solving the problems by this distance formula
11736.

X + 3 upon X + 2 minus one upon X upon X is equals to 17 upon x

Answer»
11737.

If the sum of first 7 terms aof an A.P. is 10 and sum of next 7 terms is 17 THEN find the A.P.

Answer» Let first term of AP = aCommon difference of AP = dSum of first 7 terms = 10So,\xa0{tex}10={7\\over 2}[2a+6d]\\\\=> 20 = 14a+42d \\ .......(1){/tex}Sum of next 7 terms = sum of 14 terms - sum of first 7 terms{tex}17 = {14\\over 2}[2a+13d]-10\\\\=> 27 = 14a+91d\\ \\ .....(2){/tex}Subtract (1) from (2), we get=> 7 = 49d=> d =\xa0{tex}1\\over 7{/tex}Put value of d in (1), we get=>\xa0{tex}20 = 14a + 6\\\\=> 14a = 14\\\\=> a = 1{/tex}AP :\xa0{tex}1, {8\\over 7},{15\\over 7},{22\\over 7},.....{/tex}\xa0\xa0
sum of first 7 terms = 10sum of next 7 terms = 17sum of first 14 terms = (10 + 17) = 27let first term = a and common difference = dthen S7\xa0= n/2(2a + (n = 1)d 10 = 7/2(2a + (7 - 1)d ............. 10 = 7a + 21d ........ ialso S14\xa0= 14/2 (2a + (14 - 1)d ...........27 = 14a + 91d ...... ii from i and ii we get 7 = 49d ,........ d = 1/710\xa0= 7a + 3 ................................... a = 1Thus the AP is defined by a , a+d , a+2d, ................. 1 , 8/7 , 9/7, ...............\xa0
11738.

6sin23+sec79+3tan48-----------------------------------------Cosec11+3cot42+6cos67 evaluate

Answer»
11739.

LCM of 255 and 625 by euclid leman devision

Answer»
11740.

m/n x2 + n/m = 1- 2x, solve by factorization method?

Answer» According to the question,{tex}\\frac{m}{n}{x^2} + \\frac{n}{m} = 1 - 2x{/tex}{tex}\\Rightarrow \\frac{m}{n}{x^2} + 2x + \\frac{n}{m} - 1 = 0{/tex}{tex} \\Rightarrow {x^2} + \\frac{{2nx}}{m} + \\frac{{{n^2}}}{{{m^2}}} - \\frac{n}{m} = 0{/tex} [multiplying both sides by \'n\' and dividing both sides by \'m\']{tex}\\Rightarrow {x^2} + \\frac{{2nx}}{m} + \\frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}To factorize {tex}{x^2} + \\frac{{2nx}}{m} + \\frac{{{n^2} - mn}}{{{m^2}}}{/tex}, we have to find two numbers {tex}\'a\'\\ and\\ \'b\'{/tex} such that.{tex}a + b = \\frac{{2n}}{m}{/tex} and {tex}a b = \\frac { n ^ { 2 } - m n } { m ^ { 2 } }{/tex}Clearly, {tex}\\frac{{n + \\sqrt {mn} }}{m} + \\frac{{n - \\sqrt {mn} }}{m} = \\frac{{2n}}{m}{/tex} and {tex}\\frac{{\\left( {n + \\sqrt {mn} } \\right)}}{m}\\times\\frac{{\\left( {n - \\sqrt {mn} } \\right)}}{m} = \\frac{{{n^2} - mn}}{{{m^2}}}{/tex} ({tex}\\therefore a = \\frac{{n + \\sqrt {mn} }}{m}{/tex} and {tex}b = \\frac{{n - \\sqrt {mn} }}{m}{/tex}){tex}\\Rightarrow {x^2} + \\frac{{2nx}}{m} + \\frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}{tex} \\Rightarrow {x^2} + \\frac{{\\left( {n + \\sqrt {mn} } \\right)}}{m}x + \\frac{{\\left( {n - \\sqrt {mn} } \\right)}}{m}x{/tex}{tex} + \\frac{{{n^2} - mn}}{{{m^2}}} = 0{/tex}{tex} \\Rightarrow x\\left[ {x + \\frac{{n + \\sqrt {mn} }}{m}} \\right] + \\frac{{n - \\sqrt {mn} }}{m}{/tex}{tex}\\left[ {x + \\frac{{n + \\sqrt {mn} }}{m}} \\right] = 0{/tex}{tex} \\Rightarrow \\left( {x + \\frac{{n - \\sqrt {mn} }}{m}} \\right)\\left( {x + \\frac{{n + \\sqrt {mn} }}{m}} \\right) = 0{/tex}{tex} \\Rightarrow x + \\frac{{n - \\sqrt {mn} }}{m} = 0{/tex} or {tex}x + \\frac{{n + \\sqrt {mn} }}{m} = 0{/tex}{tex} \\Rightarrow x = \\frac{{- n - \\sqrt {mn} }}{m}{/tex} or {tex}x = \\frac{{ - n + \\sqrt {mn} }}{m}{/tex}
11741.

solve for x and y: bx + ay =a+b.

Answer» ax + by = a - b multiply by abx - ay = a + b multiply by b{tex}\\Rightarrow{/tex} x = 1{tex}\\therefore{/tex} a + by = a - bby = -by = -1{tex}\\therefore{/tex} x = 1y = -1
11742.

If angle b and angle q are acute angles such that sinB=sinQ,then prove that angle b =angle q

Answer» Consider two right triangles ABC and PQR in which\xa0{tex} \\angle B{/tex} \xa0and\xa0{tex}\\angle Q{/tex} are the right angles.We have,In\xa0{tex}\\triangle ABC{/tex}{tex}\\sin B=\\frac{AC}{AB}{/tex}\xa0and, In\xa0{tex}\\triangle PQR{/tex}\xa0{tex}\\sin Q=\\frac{PR}{PQ}{/tex}{tex} \\because \\quad \\sin B = \\sin Q{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { A B } = \\frac { P R } { P Q }{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { P R } = \\frac { A B } { P Q } = k{/tex}(say) ...... (i){tex} \\Rightarrow {/tex} AC = kPR and AB = kPQ .....(ii)Using Pythagoras theorem in triangles ABC and PQR, we obtain\xa0AB2 = AC2 + BC2 and PQ2 = PR2 + QR2{tex} \\Rightarrow \\quad B C = \\sqrt { A B ^ { 2 } - A C ^ { 2 } } \\text { and } Q R = \\sqrt { P Q ^ { 2 } - P R ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { \\sqrt { A B ^ { 2 } - A C ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = \\frac { \\sqrt { k ^ { 2 } P Q ^ { 2 } - k ^ { 2 } P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } }{/tex}\xa0[ using (ii) ]{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { k \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = k{/tex}...(iii)From (i) and (iii), we get{tex} \\frac { A C } { P R } = \\frac { A B } { P Q } = \\frac { B C } { Q R }{/tex}{tex} \\Rightarrow \\quad \\Delta A C B - \\Delta P R Q{/tex}\xa0[By S.A.S similarity]{tex} \\therefore \\quad \\angle B = \\angle Q{/tex}\xa0Hence proved.
11743.

ABCD is a quadrilateral in which {A + D} = 90°. Then prove that 2 2. 2. 2 AC. + BD. = AD + BC

Answer» Given: In quadrilateral ABCD,{tex}\\angle A + \\angle D = 90 ^ { \\circ }{/tex}AC and BD are joinedTo prove: AC2 + BD2 = AD2 + BC2Construction: Produce AB and DC to meet at P.Proof: In\xa0{tex}\\triangle{/tex}APD,{tex}\\angle A + \\angle D = 90 ^ { \\circ }{/tex}(given){tex}\\therefore \\angle P = 90 ^ { \\circ }{/tex}\xa0{tex}\\left( \\because \\angle A + \\angle P + \\angle D = 180 ^ { \\circ } \\right){/tex}Now in right\xa0{tex}\\triangle A C P , \\angle A P D = 90 ^ { \\circ }{/tex}AC2 = PA2 + PC2 ....(i)(Pythagoras Theorem)and in\xa0{tex}\\triangle{/tex}BPDBD2 = PB2 + PD2Adding (i) and (ii)AC2 + BD2 = PA2 + PC2 + PB2 + PD2= (PA2 + PD2) + (PC2 + PB2)= AD2 + BD2({tex}\\therefore{/tex}\xa0In right\xa0{tex}\\triangle{/tex}APD, PA2 + PD2 = AD2 and similarly PC2 + PB2 = BD2)
11744.

sin

Answer»
11745.

Sec theta (1-sin theta)(sec theta+tan theta)=1

Answer»
11746.

Solve 2sec²A-sec⁴A-2cosec²A+cosec⁴A=cot⁴A-tan⁴A

Answer»
11747.

cosA-cos3A/sin3A+sinA=tanA

Answer» ok
11748.

If sin square theeta +3coss quare theeta=4 show that tan theeta =1÷√3

Answer»
11749.

1 term syllabus

Answer» Different schools go for different syllabus for first term after the end of CCE pattern.
11750.

Sum of integers from1 to100 which are not divisible by 3or5 is1)24892)47353)23174)2632

Answer» Sum of the integers 1 to 100 =100(2+99×1)÷2=5050Sum of Integers which are divisible by 3 is=33(6+32×3)÷2=33×51=1683\xa0Sum of Integers which are divisible by 5 is=20(10+19×5)÷2=10×105=1050Sum of Integers which are divisible by 15 is=6(30+5×15)÷2=3×105=315Therefore, the number is,5050-1683-1050+315=4000-1368=2632So the answer is (4) 2632.