Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11901.

X=-2 and x=-1/5 are solutions find p and r for equations 5x square +px +r=0

Answer»
11902.

Triangle ABC is similar to triangle ADE if AE =2cm. EC=3cm and DE=1.6cm then find BC

Answer»
11903.

the arithmetic means of the following data is 25, find the value of k

Answer» The frequency table of the given data is as given below:\tValue (xi)141516182025kFrequency (fi)1313331\tIt is given that the mode of the given date is 25. So, it must have the maximum frequency. That is possible only when k\xa0=25.Hence, k\xa0= 25.
11904.

Prove that:Sec8a-1/sec4a-1 = tan8a/tan2a

Answer»
11905.

Calculate the modal income

Answer»
11906.

(x-3)(2x+1)=x(x+5)

Answer» 5+✓57/2,5-✓57/2
11907.

How i get 80 above percent in class 10th

Answer» Do NCERT 1st of all, Each question & Example....Once done, then pick up the last 5 year question papers which u may get in n number of books / online websites.STUDY HARD... AND ATTEMPT SMARTLY without cutting & mistakes. ... ALL THE BEST\xa0
11908.

152x-378y=-74 and -378x+152y=-604

Answer» The given equations are{tex}152x - 378y = -74{/tex} ...(i){tex}-378x\xa0+ 152y = -604{/tex}. ... (ii)Clearly, the coefficients of x\xa0and y in one equation are interchanged in the other.Adding (i) and (ii), we get{tex}(152-378)x\xa0+ (-378 +152) y = -(74 + 604){/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(-226)x\xa0+ (-226)y = -678{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(-226)(x + y) = -678{/tex}{tex}\\Rightarrow \\quad ( x + y ) = \\frac { - 678 } { - 226 } \\Rightarrow x + y = 3{/tex}. ...(iii)Subtracting (ii) from (i), we get{tex}(152 + 378) x + (-378 - 152)y = (-74 + 604){/tex}{tex}\\Rightarrow{/tex}530x\xa0- 530y = 530{tex}\\Rightarrow{/tex}\xa0530(x - y) = 530 {tex}\\Rightarrow{/tex}\xa0x\xa0- y = 1. ... (iv)Adding (iii) and (iv), we get 2x = 4 {tex}\\Rightarrow{/tex}\xa0x = 2.Subtracting (iv) from (iii), we get2y = 2 {tex}\\Rightarrow{/tex} y = 1.Hence, x = 2 and y = 1
11909.

Statement of (AAA - similarty )

Answer» AAA Similarity Criterion: If in two triangles, the corresponding angles are equal, then their corresponding sides are proportional and hence the triangles are similar.
11910.

4+6

Answer» 10
11911.

1/(x-3)-1/(x+5)=1/6

Answer» X=-9 or x=7
11912.

Show that the polynomial f(x)= x to the power 4 + 4 x square + 6 has no zero

Answer» Given, f(x) = x4 + 4x2 + 6 = (x2)2 + 4x2 + 6Put x2 = aHence x4 + 4x2 + 6 = (x2)2 + 4x2 + 6 = a2 + 4a + 6To find the zero of the above polynomial, we take a2 + 4a + 6 = 0 We know D=b2-4ac .D=4^2-4*1*6 =16-24= -8 Here D<0 so it has no real root.
11913.

If cosec theta/ sin theta - xtan^theta =1

Answer»
11914.

Prove that 1-sin theta / 1+sin theta = 1-sin theta / cos theta

Answer»
11915.

What is the theorems in chapter circles

Answer»
11916.

Find the odd number 35752178

Answer»
11917.

Where x plus x by 1 equal 3 .solve by factors methods

Answer» x + x\xa0= 32 x = 3 => x = 3/2\xa0(Answer)\xa0
11918.

?Trigonometric identities ???

Answer» Sin^2+cos^2=11+tan^2=sec^21+cosec^2=cot^2
11919.

(x+1) (x-2)

Answer» X=2X=-1
11920.

Prove the BPT theorem

Answer» The theorem is if a line drawn parallel to one side of a triangle interest the other two side at a distinct point either it divdes in same ratio
11921.

Does question papers are come from board in September exam

Answer» Paper was tough
Yes
11922.

Using Euclid division lemma find HTC of 56 , 96 and 404

Answer»
11923.

x+3×2x-5=32

Answer» x + 3 ×\xa02x - 5 = 32Applyng BODMAS, x + 6x - 5 = 32 => 7x - 5 = 32 => 7x = 37 => x = 37/7 (Answer)\xa0\xa0
I think roots are not realX=1+√377/4X=1-√377/4
11924.

How many side are there in treangle

Answer» 3 sides
3
11925.

In an acute angled triangle ABC,if sin (A+B-C)= 1/2 and cos (B+C-A)= 1/root 2

Answer» Sin (A+B-C) = 1/2 => Sin (A+B-C) = Sin 300Cos (B+C-A) = 1/√2 => Cos (B+C-A) = Cos 450=> A + B - C = 300 ........ (Eq. 1)AND, B + C - A = 450 ........ (Eq. 2)ALSO, A + B + C = 1800 ........ (Eq. 3)Adding Eq. 1 & 2, we get: 2 B = 750 => B = 37.50Subtracting eq. 2\xa0from eq. 3, we get: 2 A = 1350\xa0=> A = 67.50Using value of A & B, in Eq. 3, we get C = 750\xa0\xa0\xa0\xa0
11926.

Show that 15 power n can never end up with zero

Answer» 15n\xa0= 15\xa0* 15 * 15 * 15 *15 *15 *............... nLet n = 1 => 15For n = 2,\xa0=> 225For n = 3, => 3375\xa0Plz note that for every value of n, the last digit ends with 5 everytime, thus the last digit will never be other than 5.\xa0
11927.

What is value of sin30

Answer» 1/2
11928.

how we can easily proof trignometric eq.

Answer» By changing LHS and RHS in sin ,cos If eq. already in sin,cos then divide numerator and Denominator by sin
11929.

7sin^2A+3cos^2A=4 show that tanA=1/root3

Answer» {tex}7sin^2A+3cos^2A=4{/tex}{tex}=> 4sin^2A+ 3sin^2A+3cos^2A=4{/tex}{tex}=> 4sin^2A+ 3(sin^2A+cos^2A)=4{/tex}{tex}=> 4sin^2A+ 3=4{/tex}{tex}=> 4sin^2A = 1 {/tex}{tex}=> sin^2A = {1\\over 4} {/tex}{tex}=> sinA = {1\\over 2}{/tex}{tex}=> sinA = sin 30^o{/tex}{tex}=> A = 30^o{/tex}So\xa0{tex}tan A= tan 30^o = {1\\over \\sqrt 3}{/tex}
11930.

Trick of AP

Answer»
11931.

Find the sum of all the 11 terms of an AP whose middle most term is 30

Answer» given n =11middle term = (a1 + a11)/2 = 30a1 + a11 = 60 .......... iSn = n/2(a1 + a11) ......... ii = 11/2 (60) ... from i = 11 x 30 = 330
11932.

Find the sum of all the 11 terms of an Ap whose middle most term is 30.

Answer» Let a be the first term and d be the common difference of the given A.P.Clearly, in\xa0an A.P. consisting of 11 terms,\xa0{tex} \\left( \\frac { 11 + 1 } { 2 } \\right) ^ { t h }{/tex}\xa0i.e. 6th term is the middle term.{tex}\\text{ it is given that the middle term =30}{/tex} So a+5d=30 .....(1){tex}S_{11}=\\frac{11}{2}(2a+10d){/tex}\xa0= 11(a+5d) But a+5d=30 from (1)Hence S\u200b\u200b\u200b\u200b\u200b\u200b11\xa0= 11 × 30= 330
11933.

What is the full form of A.T.P.ANS

Answer» adenosine triphosphate it is the energy currency
Adenosine Triphosphate
11934.

Prove Pythagoras theorem .................

Answer»
11935.

cicke formulas

Answer»
11936.

Sin2a+sin2b=1

Answer»
11937.

Hamare 10th k maths ka exam ncert m see hi hoga kya

Answer» My was from ncert
11938.

Prove that 1-cosA+sinA/sinA+cosA-1=1+sinA/cosA

Answer»
11939.

Application of tri

Answer» Use to measure distances
11940.

TanA/cotA+tanB/cotB =tanAtanB

Answer»
11941.

Median divide in two equal ratio but why

Answer»
11942.

state fundamental theorem of arithmetic

Answer» it states that any positive integer greater than 1 is either a prime number or a product of prime numberse.g.2 is a prime no3 is a prime no4 = 2x2 = 225 is prime6 = 2x37 is prime8 = 2x2x2 = 23 and so on
11943.

Sin2A+ Cos2A

Answer» Sin2A+Cos2A=1 hota Hai.
11944.

Prove that 0/0=2 ??

Answer»
11945.

what is alternate segment theorem

Answer» It states that an angle between tangent and a chord of a circle through the point of contact is equal to the angle in the alternate segment
11946.

Find the quadratic polynomial whose zeros are 7+√3 and 7+√3

Answer»
11947.

Find zeros of polynomials

Answer»
11948.

ABC is a triangle angle A = Angle B find angle C

Answer»
11949.

2*5x+8y

Answer» 5x + 4y
11950.

Find roots of equation :ax+bx+c

Answer» roots of equation ax2+bx+c=0 where a , b , c are real numbers are given by{tex}x = {-b \\pm \\sqrt{b^2-4ac} \\over 2a}{/tex}