Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

11951.

Find LHS

Answer»
11952.

Cos 3

Answer»
11953.

When we have 6 box which sum is equel 20 one letter no repte

Answer»
11954.

Simplify(1-tanA)^2/1-cotA)^2 = tan^2A

Answer»
11955.

Class6. Ex 7.6 q no 1. =4/9+2/7

Answer»
11956.

Triangles

Answer» Three sided figure
11957.

I want last years question with solution then what is the procedure to dwnld that paper

Answer»
11958.

2*5=?

Answer» 10
11959.

Represent the equation x-1=-1;3x+2y=12 on gragh

Answer» On graph
11960.

Quadric equation

Answer»
11961.

Prove that square of any two side of triangle is greater than third side

Answer»
11962.

Sin 30 value

Answer» ½
1/2
1/2
1/2
11963.

a10-a16 ,a=3,d=90

Answer» a10 = a + (10-1)da10=3+9x90a10=813 ................ ia16=3+15x90a16=1353 .................... iia10 - a16 = 813 - 1353 = - 540
a10 = a + (10-1)da10=3+9x90a10=813 ................ ia16=3+15x90a16=1353 .................... iia10 - a16 = 813 - 1353\xa0 = - 540
11964.

Proof of basic proportionality theorem

Answer» basic proportionality theoremin a triangle ABC if line DE II BC\xa0such that it intersects AB in D and AC in E thenAD/DB = AE/ECif a line is drawn parallel to one side intersecting the other two sides , then it divides the two sides in the same ratio\xa0\xa0
11965.

prove that 5 is irrational

Answer» 5 is not an irratonal. it rational number because we can write 5 in the form of\xa0{tex}p\\over q{/tex}
11966.

√3xsquare-8x+4√3 by factorisation method

Answer» √3xsquare-6x-2x+4√3=√3(x-2√3)-2(x-2√3)=(x-2√3)(√3x-2)
11967.

If the common difference is 3 then find a20- a15

Answer»
11968.

Why sin30=1/2

Answer» It\'s reason is given in the text book please read it carefully.
Construct right angle triangle ABC1. Draw an arbitrarily long 2. Mark any point namely A on it and use protractor to mark 30° from A and draw another long line 3. Mark point C on the initial line that you drew and again, use the protractor to mark 90° to AC. 4. Extend the 30° from line A and the 90° from line C until they meet 5. Let the point of intersection B and measure the ratio of BC/AB and will be 0.5 or 1/2
11969.

Prove that root over 5 is irrational

Answer» Use contradict method
Don\'t be lazy to ask these simple question
11970.

How to solve the crossfication

Answer»
11971.

2x-3y=5

Answer»
11972.

Prove bpt by paper cutting method

Answer» Take a coloured paperDraw a triangle on the coloured paper (of reasonable size)Name it as ABCCut\xa0the triangle ABCNow draw a line parallel to BC such that it intersects other two sides AB in D\xa0and AC in E i.e DE is parallel to BCMeasure the lengths of AD , DB, AE, EC with the help of a scale (ruler)You will find that AD/DB = AE/EC\xa0
take a coloured paperdraw a triangle on the coloured paper (of reasonable size)name it as ABCCut\xa0the triangle ABCnow draw a line parallel to BC such that it intersects other two sides AB in D\xa0and AC in E i.e DE is parallel to BCmeasure the lengths of AD , DB, AE, ECYou will find that AD/DB = AE/EC\xa0
11973.

math chart

Answer»
11974.

Method of how to multiple in decimals

Answer»
11975.

2+8+6

Answer» 16
11976.

State Fundamental theorem of algorithm.

Answer» a=bq+r
For any positive integer a we have integer b which uniquely divides a to give quotient q and remainder
11977.

Which term of the AP:121,117,113,_ _ _is its first negative terms

Answer» Here the given AP is :\xa0121,117,113........a=121 and d=117-121 = -4The general term of an AP is given byan\xa0= a+(n-1)dLet nth term is negative{tex}\\Rightarrow{/tex}\xa0a+(n-1)d<0{tex}\\Rightarrow{/tex}\xa0121+(n-1)(-4)<0{tex} \\Rightarrow {/tex}\xa0121-4n+4<0{tex} \\Rightarrow {/tex}\xa0-4n+125 < 0{tex} \\Rightarrow {/tex}\xa0-4n< -125Hence, 4n>125{tex} \\Rightarrow {/tex}\xa0n >{tex}\\frac{{125}}{4}{/tex}So, n > 31.25Hence, the 32nd term is first negative term.
11978.

Which term of the AP :121,117,113_ _ _ is the first negative term

Answer» Here the given AP is :\xa0121,117,113........a=121 and d=117-121 = -4The general term of an AP is given byan\xa0= a+(n-1)dLet nth term is negative{tex}\\Rightarrow{/tex}\xa0a+(n-1)d<0{tex}\\Rightarrow{/tex}\xa0121+(n-1)(-4)<0{tex} \\Rightarrow {/tex}\xa0121-4n+4<0{tex} \\Rightarrow {/tex}\xa0-4n+125 < 0{tex} \\Rightarrow {/tex}\xa0-4n< -125Hence, 4n>125{tex} \\Rightarrow {/tex}\xa0n >{tex}\\frac{{125}}{4}{/tex}So, n > 31.25Hence, the 32nd term is first negative term.
11979.

Datesheet of 10th ka URL do koi!

Answer»
11980.

Impotant question gor quadratic equation

Answer»
11981.

RIMSHA?????

Answer»
11982.

If 5th term of an ap is 0 show that 33rd term is two times its 19th term

Answer» So easy ??
11983.

RIMSHA plzzz come

Answer»
11984.

How do we find root

Answer» By long division method
11985.

Find the area of the circle that can be inscribed in a square of side 8cm

Answer» side of square=8diameter=8radius=4area=pi x r2 = 22/7 x 16 = 3.14x16=50.24 cm2
11986.

(1/cosecA-cotA)-(1/sinA)=(1/sinA)-(1/cosecA+cotA)

Answer»
11987.

Find the roots of the equation 5x ×x+2x+5

Answer» It has no real roots.
-5/3
vvjjhdhxhz
11988.

Rd sharma chapter 8 examples no. 8

Answer»
11989.

2x _5+8=0

Answer» 2x+3=0X=-3/2
2x _5+ 8
11990.

Alfa and bita are zeros of x2-5x+k such that Alfa -bita =1

Answer» (Alfa+bita)=5 and alfa ×bita=K. Also alfa - bita =1(given) (alfa +bita)2-(alfa - bita)2 =4alfa×bita 5ka square - 1ka square =4alfa×bita 4alfa ×bita =(25-1)=24Alfa ×bita =6Hence, k=6.
11991.

How can i read ch triangle i dont understand this

Answer»
11992.

The n term of an ap is 7-4n find common difrence

Answer» an = 7 - 4n {tex}\\Rightarrow{/tex}\xa0a1\xa0= 7 - 4 {tex}\\times{/tex}\xa01\xa0= 3a2 = 7 - 4 {tex}\\times{/tex} 2 = -1 and a3 = 7 - 4 {tex}\\times{/tex}\xa03 = -5{tex}\\therefore{/tex}\xa0Common difference = a2\xa0- a1 = -1 - 3 = -4.
11993.

Who to solve trigonometry questions

Answer»
11994.

54+6

Answer» 60
11995.

Prove that sinA-cosA+1/ sinA+cosA-1=1/secA-tanA using this identity secA-tanA

Answer» 1)divide numerator and denominator by cosA in left hand side and try to solve it
11996.

Sin u +cos u= m and sec u + cosec u=n then prove that n(m²-1)=2m

Answer» Given,\xa0sin{tex}\\theta{/tex}\xa0+ cos{tex}\\theta{/tex}\xa0= m and sec{tex}\\theta{/tex}\xa0+ cosec{tex}\\theta{/tex}\xa0= nConsider,\xa0n(m2 - 1) = (sec{tex}\\theta{/tex}\xa0+ cosec{tex}\\theta{/tex})[(sin{tex}\\theta{/tex}\xa0+ cos{tex}\\theta{/tex})2\xa0-\xa01]{tex}= \\left( \\frac { 1 } { \\cos \\theta } + \\frac { 1 } { \\sin \\theta } \\right){/tex}[(sin2{tex}\\theta{/tex}\xa0+ cos2{tex}\\theta{/tex}) + 2sin{tex}\\theta{/tex}cos{tex}\\theta{/tex}\xa0- 1]{tex}= \\frac { ( \\sin \\theta + \\cos \\theta ) } { \\sin \\theta \\cos \\theta } \\cdot [2 \\sin \\theta \\cos \\theta]{/tex}= 2(sin{tex}\\theta{/tex}\xa0+ cos{tex}\\theta{/tex})= 2m
11997.

If check whether 1-tan2A/1+tan2A=cos2A-sin2A or not

Answer» 1-tan2A/sec2A1-sin2A/cos2A/sec2A=cos2A-sin2A/cos2A/1/cos2A=cos2A-sin2S
11998.

Prove that :1/tanA +cotA 1/1+sinA +1/1-sinA=2sec2A

Answer»
11999.

X+=14X-y=4Solve in substitution method

Answer» x+y=14x=14-y(1)put it in equation 2x-y=414-y-y=4 (from1)14-2y=4-2y=-10y=5x=14-yx=9
12000.

What is the solution of the pair of equations y=0 and y=-3

Answer»