Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

12001.

Prove that root 2 is a irrational

Answer» 2 is a rational not irrational because it can write in the form of p/q(2/1)
Take a any value of this like a and b Then solve itBy following method
12002.

Sinø*cosø

Answer»
12003.

Ap=2.3.4.5......... find sn

Answer»
12004.

Find the 17th term from the end of the AP.1,6,11,16,......211,216

Answer» a = 216 d=-5n=17a17= a + 16d = 216 +16 (-5) =216-80 136
216 , 211, ............... 16,11,6,1a=216d= - 5 (211 - 216)n = 17a17=a+16(-5) = 216 - 80 = 136
12005.

show that square of any positive integer cannot be of the form 5q+2 or 5q+3 for any integer q

Answer» Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get{tex}\\style{font-family:Arial}{\\begin{array}{l}n=5q+1,5q+2,5q+3\\;and\\;5q+4\\;\\\\\\end{array}}{/tex}Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;{tex}\\style{font-family:Arial}{\\begin{array}{l}(5q\\;+\\;1)^{\\;2}\\;=\\;25q^2\\;+\\;10q\\;+\\;1\\;=\\;5(5q^2\\;+\\;2q)\\;+\\;1\\;=\\;5m\\;+\\;1\\\\where\\;m\\;=\\;5q^2\\;+\\;2q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;2)^2\\;=\\;25q^2\\;+\\;20q\\;+\\;4\\;=\\;5(5q^2\\;+\\;4q)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;4q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;3)^{\\;2}\\;=\\;25q^2\\;+\\;30q\\;+\\;9\\;=\\;5(5q^2\\;+\\;6q+\\;1)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;6q\\;+\\;1,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;4)^2\\;=\\;25q^2\\;+\\;40q\\;+\\;16\\;=\\;5(5q^2\\;+\\;8q\\;+\\;3)\\;+\\;1\\;=\\;5m\\;+\\;1,\\;\\\\where\\;m\\;=\\;5q^2\\;+\\;8q\\;+\\;3,\\;which\\;is\\;an\\;integer\\\\\\end{array}}{/tex}Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.
12006.

If 14th term of an AP is twice its 8th term is -8, then find the sum of its first 20 terms.

Answer» Let first term be a and common difference be d.Here, a14 = 2a8a + 13d = 2(a + 7d)a + 13d = 2a + 14da = - d...(i)a\u200b\u200b\u200b\u200b\u200b\u200b6\xa0= - 8a + 5d = -8 ... (ii)Putting the value of a from (i) in (ii), we get-d + 5d = -84d = -8d = -2Put d = -2 in (i)a = -(-2)a = 2So ,a = 2, d = - 2{tex}S _ { 20 } = \\frac { 20 } { 2 } [ 2 \\times 2 + ( 20 - 1 ) ( - 2 ) ]{/tex}{tex}= 10 [ 4 + 19 \\times ( - 2 ) ]{/tex}= 10(4 - 38)= 10\xa0{tex}\\times{/tex}(-34)= - 340. Which is the required sum of first 20 terms.
12007.

Formula of crossmultiplication in linear equation in two variables

Answer» X/b1c2 -b2c1 +y/c1a2-c2a1 -1/a1b2-b2a1
12008.

Proof od pythagorus theroum

Answer»
12009.

Find the value of 10 square 10 - cot square 80

Answer» Given, tan210°-cot280°=\xa0tan2(90° - 80°) - cot280°{tex}[\\because tan(90^o-\\theta)=cot\\theta]{/tex}= cot280° - cot280°= 0
12010.

Find the value of a when the distance between the points (3,a) and (4,1)is 10

Answer» 10=√(4-3)whole sq+(1-a)whole sq
distance =√x1-x2+y1+y2
12011.

Proof BPT Therom ?

Answer»
12012.

find the trigonometric ratios of 30 and 60

Answer»
12013.

Show that 3+1 is a composite number

Answer» 3+1=4.4 is a composite number. As its factor are more than 2.i.e.(1,2,4)
12014.

How to solve quadratic equation by complet sqare

Answer»
12015.

If m=cosec A-SinA and n=secA-tan A ,prove that (m^2.n)^2/3 + (n^2.m)^2/3=1

Answer» Given,(cot{tex}\\theta{/tex}\xa0+ tan{tex}\\theta{/tex}) = m and (sec{tex}\\theta{/tex}\xa0- cos{tex}\\theta{/tex}) = n{tex}\\Rightarrow \\left( \\frac { 1 } { \\tan \\theta } + \\tan \\theta \\right) = m{/tex}\xa0and\xa0{tex}\\left( \\frac { 1 } { \\cos \\theta } - \\cos \\theta \\right){/tex}\xa0= n{tex}\\Rightarrow \\left( \\frac { 1 + \\tan ^ { 2 } \\theta } { \\tan \\theta } \\right) = m{/tex}\xa0and\xa0{tex}\\frac { \\left( 1 - \\cos ^ { 2 } \\theta \\right) } { \\cos \\theta }{/tex}\xa0= n{tex}\\Rightarrow \\left( \\frac { \\sec ^ { 2 } \\theta } { \\tan \\theta } \\right){/tex}\xa0= m and\xa0{tex}\\frac { \\left( 1 - \\cos ^ { 2 } \\theta \\right) } { \\cos \\theta }{/tex}\xa0= n{tex}\\Rightarrow m = \\frac { 1 } { \\cos ^ { 2 } \\theta \\times \\frac { \\sin \\theta } { \\cos \\theta } }{/tex} and\xa0{tex}\\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } = n{/tex}\xa0{tex}\\Rightarrow m = \\frac { 1 } { \\cos \\theta \\sin \\theta } {/tex}\xa0and\xa0{tex}n = \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } {/tex}.......(1)Now, L.H.S.{tex}= \\left( m ^ { 2 } n \\right) ^ { \\frac { 2 } { 3 } } - \\left( m n ^ { 2 } \\right) ^ { \\frac { 2 } { 3 } } {/tex}{tex}= \\left[ \\frac { 1 } { \\cos ^ { 2 } \\theta \\sin ^ { 2 } \\theta } \\times \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } \\right] ^ { \\frac { 2 } { 3 } } - \\left[ \\frac { 1 } { \\cos \\theta \\sin \\theta } \\times \\frac { \\sin ^ { 4 } \\theta } { \\cos ^ { 2 } \\theta } \\right] ^ { \\frac { 2 } { 3 } }{/tex}. [from (1)]{tex}= \\left( \\frac { 1 } { \\cos ^ { 3 } \\theta } \\right) ^ { \\frac { 2 } { 3 } } - \\left( \\frac { \\sin ^ { 3 } \\theta } { \\cos ^ { 3 } \\theta } \\right) ^ { \\frac { 2 } { 3 } } = \\frac { 1 } { \\cos ^ { 2 } \\theta } - \\frac { \\sin ^ { 2 } \\theta } { \\cos ^ { 2 } \\theta }{/tex}= sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex}\xa0= 1 [{tex}\\because{/tex} sec2{tex}\\theta{/tex}\xa0- tan2{tex}\\theta{/tex}\xa0= 1]= R.H.S. Hence, Proved.
12016.

Divide 15 into 2 equal parts such that the sum of their reciprocals would be 3/10(3 by 10)

Answer» Let the nos be x and yThen x+y= 15 》y=15-xAnd
You should take the two part of fifteen = x and (15-x) hence the equation of this condition was 1/x+1/15-x=3/10
Let one be xOther be y X+Y=151/x+1/Y=160X+y/xy=160
12017.

What is a formula of triangle

Answer» 1/2 *b*h
Area of triangle= Half of base×height
12018.

Matrics

Answer»
12019.

how to prove triangle by thales theorem?

Answer»
12020.

Find the sum of all 3 digit natural numbers which are multiples of 11 and 7

Answer» 777
12021.

What a2 + b2

Answer»
12022.

Find the value of x if the distance between the points (x,-1) and (3,-2) is x+5

Answer» We have to find the value of x, if the distance between the points (x, -1) and (3, 2) is 5.Let P(x, -1) and Q(3, 2) be the given points. Then,PQ = 5{tex}\\Rightarrow \\quad \\sqrt { ( x - 3 ) ^ { 2 } + ( - 1 - 2 ) ^ { 2 } } = 5{/tex}Squaring both sides,we get,{tex}\\Rightarrow{/tex}(x - 3)2 + 9 = 52\xa0{tex} \\Rightarrow{/tex}x2 - 6x + 18 = 25{tex}\\Rightarrow{/tex}\xa0x2 - 6 x - 7 = 0{tex}\\Rightarrow{/tex}(x - 7) (x + 1) = 0{tex}\\Rightarrow{/tex}\xa0x = 7 or, x = -1
12023.

What is biggest prime number

Answer» Infinite
Impossible to tell
12024.

If tan A= cot B prove that A+B=90°

Answer» tanA =tan(90-B)A=90\'-B90\'=A *B
12025.

Hcf of 4052 and 12576 by euclid algorithm

Answer» {tex}12576 = 4052 \\times 3 + 420{/tex}{tex}4052 = 420 \\times 9 + 272{/tex}{tex}420 = 272 \\times 1 + 148{/tex}{tex}272 = 148 \\times 1 + 124{/tex}{tex}148 = 124 \\times 1 + 24{/tex}{tex}124 = 24 \\times 5 + 4{/tex}{tex}24 = 4 \\times 6 + 0{/tex}HCF of 12576 and 4052 is \'4\'.
12026.

Show that the square of any positive odd integer is of the form 8m+1

Answer»
12027.

Find the 5th term of ap 5,9,13........

Answer» 21
12028.

Subscribe khopda king on YouTube

Answer» Subscribe khopda king on YouTube
12029.

Find the HCF of 135 and 225 by Euclid division algorithm

Answer» By using EDL we find the HCF of 135 and 225p=aq+r225=135×1+90135=90×1+4590=45×2+0 ^ HCF
12030.

Who is the father of geometry.

Answer» Euclid
Eculid
Euclid is the father of geometry.
12031.

Prove 1/√2

Answer»
12032.

Sin60 + sin90 + cto67

Answer»
12033.

7x - 2y = 13x + 4y= 15Solve by elimination method

Answer»
12034.

Express each of the following as a fraction in simplest form(1)0.365 recring on 65

Answer» We have to express the given decimal in fractional form. So for that, let {tex}x = 0.3 \\overline { 65 }{/tex}, thenx = 0.3656565.... ...(i)10x = 3.656565.... ...(ii)1000x = 365.656565.... ....(iii)Subtracting (ii) from (iii), we obtain\xa0{tex}990x = 362 \\\\ \\Rightarrow x = \\frac { 362 } { 990 } = \\frac { 181 } { 495 }{/tex}
12035.

+2-(-2)

Answer» 4
+4
+4
4
4
4
12036.

2.1

Answer»
12037.

If a+b=10 .and ab=9 then (a, b)=.......?

Answer» Ab=9 ,A=9/b9/b+b=109+b²=10bb²-10b+9=0b²-9b-b+9=0b(b-9)-1(b-9)=0(b-1)(b-9)=0b=1,9If b=1A=9And if b=9A=1
Vansh
1
Hello
12038.

Sbdudjdjdjdbx

Answer» Wrong question
12039.

In a lottery there are 10prizes and 25 blanks what is the probability of getting a prize

Answer» And is 10/35=2/7
2/7 is a right answer
10 by 25
10 by 25
2/7
12040.

Express the trignometric ratios sinA,secA,tanA in term ofcotA

Answer»
12041.

Is it Same syllabus of 2018 or 2019

Answer»
12042.

Can u pls give me this year question paper 2018

Answer» But how please give your whatsapp number
Yes
12043.

Prove that line segment joining points of contact of two parallel tangent pass through center

Answer» Given: l and m are the tangent to a circle such that l || m, intersecting at A and B respectively.To prove: AB is a diameter of the circle.Proof:A tangent at any point of a circle is perpendicular to the radius through the point of contact.{tex}\\therefore{/tex}\xa0{tex}\\angle X A O = 90 ^ { \\circ }{/tex}and\xa0{tex}\\angle Y B O = 90 ^ { \\circ }{/tex}Since\xa0{tex}\\angle X A O + \\angle Y B O = 180 ^ { \\circ }{/tex}\xa0An angle on the same side of the transversal is 180°.Hence the line AB passes through the centre and is the diameter of the circle.
12044.

X-3y-3,

Answer»
12045.

Quadra

Answer»
12046.

Ab 2

Answer»
12047.

(alpha +beta) square - (beta -alpha)square=4 (alpha×beta) why??

Answer» Yes it\'s possible
12048.

What is the definition of integer

Answer» Combination of whole number as well as negative numbers ..
It is a whole number that can be positive,negative or zero.
12049.

Rs aggarwal solutions new edition chapter 1

Answer»
12050.

Tenth maths question paper 2018 solutions

Answer» Check question papers here :\xa0https://mycbseguide.com/cbse-question-papers.html