Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

16351.

Which practise book will good for maths board exam?

Answer» Rd Sharma and RS Aggarwal and examidea
Mtg cbse champion
Reply kr dio Prachi
I think evergreen or you can choose whatever Prachi
16352.

Hlo..anyone online??

Answer» Say ur time
Ya
When u will be active???
Mm
Ok
Its voldemort
Ur profile pic???
Ok.no prblm
Actually iam not active
Ok.
Ak fabz
My user name is aishreet.27 and name is arshdivya...in profile.pic.there is black and white pic.of earings.
Oh wow..can u tell me ur id..if u dont mind
Tell ur name
Yeah
Going good...and urs
How is +1
R u on insta. Actually i m on Instagram now..thats y m asking
Fine???.alive
Fine
How r u?
How r u
Same to uu
Happy frndship day
Hey
Hi snehil
Oh hi alkesh..yes its me
Is this aishreet
Yes
16353.

Find the HCF of the following by using long division method

Answer»
16354.

Ex 6.3. Question---14

Answer»
16355.

What is sin(sin(sin(sin...........)))

Answer» ??
You\'n do your Time- Pass at some other website Too...... kyonki yahaan toh sirf exam mein log ate hain naheen toh bahot boring website Hai.....
Actually my ques is , how to do timepass and thats what i am doing ?
16356.

X^0 = 1 Why

Answer» X^0= x^(1-1) =(X^1)/(x^1) =1
16357.

Ncert ex- 6.5, question no. 2,8,11

Answer» You can check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
16358.

16 n can end with 0 for n belongs to N

Answer» It cannot end with digit zero because in 16 n (2×2×2×2) n is there and for ending with digit zero the number must contain 2 and 5 in its prime factors and 16 only contain 2 but not 5 that is why it cannot end with 0
16ⁿ = (2×2×2×2)ⁿPrime factorisation of 16ⁿ does not contain the prime factor 5. Therefore, 16ⁿ cannot end with digit 0 for any natural number n
16359.

Prove that √1+cos/1-cos=1+cos/sin

Answer» Multiply both numerater and denominator by 1+cosYou will get √(1+cos)^2/√1-cos^21-cos^2 = sin^2√(1+ cos)^2/√sin^21+cos/sin
√1+cos 1. --------------- √1-cos 2. √1+cos x1+cos -------------------------- √1-cos x 1+cos 3. √(1+cos)*2 ------------------ √ 1-cos*24. √1+cos ---------- √ Sin*25. 1+cos ------- Sin
16360.

Hii...?

Answer» Hlo bestie
Hlo
16361.

X+y/2 +y-1/3=9X-1/3 + y+1/2 =8

Answer» The given equations may be written as{tex} \\frac { x + 1 } { 2 } + \\frac { y - 1 } { 3 } = 8 {/tex}⇒ 3(x + 1) + 2 (y - 1) = 48⇒ 3x + 3 + 2y - 2 = 48⇒ 3x + 2y + 1= 48⇒ 3x+2y = 47 ... (i){tex}\\frac { x - 1 } { 3 } + \\frac { y + 1 } { 2 } = 9{/tex}⇒ 2(x -1 ) + 3(y +1) = 54⇒ 2x - 2 + 3y + 3 = 54⇒ 2x + 3y + 1 = 54⇒ 2x + 3y = 53. ... (ii)Multiplying (i) by 2 and (ii) by 3 and subtracting, we get(4\xa0- 9)y = 94-159{tex} \\Rightarrow - 5 y = - 65 {/tex}{tex}\\Rightarrow y = \\frac { - 65 } { - 5 } {/tex}{tex}\\Rightarrow y = 13{/tex}Putting y = 13 in (i), we get3x\xa0+ (2 {tex} \\times{/tex}\xa013) = 47{tex} \\Rightarrow{/tex} 3x + 26 = 47{tex} \\Rightarrow{/tex} 3x = (47 - 26){tex} \\Rightarrow{/tex}3x = 21{tex} \\Rightarrow \\quad x = \\frac { 21 } { 3 } = 7{/tex}So, x = 7Hence, x = 7 and y = 13
16362.

In a lottery there are 8 prizes and 16 blanks.What is the probability of getting a price?

Answer» 8+16= 248/24== 1/3
Go ahead and use youtube
50%
16363.

If perimeter and area of a circle is equal and find radius

Answer» 2
Radius is 2
2
16364.

X2+5x-(a2+a-6)=0

Answer»
16365.

Two opposite vertices of a square (-1,2) and (3,2). Find the coordinate of remaining vertices.

Answer» Let ABCD be a square and B (x, y) be the unknown vertex.AB = BC{tex} \\Rightarrow {/tex} AB2 = BC2\xa0{tex} \\Rightarrow {/tex}\xa0(x + 1)2 + (y - 2)2 = (x - 3)2 + (y - 2)2{tex} \\Rightarrow {/tex} x2 + 1 + 2x + y2 + 4 - 4x = x2 - 6x + 9 + y2 + 4 - 4x{tex} \\Rightarrow {/tex}\xa02x + 1 = - 6x + 9{tex} \\Rightarrow {/tex}\xa08x = 8{tex} \\Rightarrow {/tex}\xa0x = 1 ........ (i)In {tex}\\triangle{/tex}ABC, AB2 + BC2 = AC2{tex} \\Rightarrow {/tex}\xa0(x + 1)2 + (y - 2)2 + (x - 3)2 + (y - 2)2 = (3 + 1)2 + (2 - 2)2{tex} \\Rightarrow {/tex}x2 + 1 + 2x + y2 - 4x + 4 + x2 + 9 - 6x + y2 + 4 - 2y = 16 + 0{tex} \\Rightarrow {/tex}\xa02x2 + 2y2 + 2x - 4y - 6x - 4y + 1 + 4 + 9 + 4 = 16{tex} \\Rightarrow {/tex}\xa02x2 + 2y2 - 4x - 8y + 2 = 0{tex} \\Rightarrow {/tex}\xa0x2 + y2 - 2x - 4y + 1 = 0 ..... (ii)Putting the value of x in eq. (ii),1 + y2 - 2 - 4y + 1 = 0\xa0{tex} \\Rightarrow {/tex}\xa0y2 - 4y = 0\xa0{tex} \\Rightarrow {/tex}\xa0y(y - 4) = 0{tex} \\Rightarrow {/tex}\xa0y = 0 or 4Hence the other vertices are (1, 0) and (1, 4).
16366.

Sin18°/cos72° evaluate this.

Answer» Sin 18/cos72 cos(90-72)/cos72Cos72/sin72=1Tan26/tan(90-74)=1Cos48-sin42=sin(90-42)-sin42=0Cosec31-Cosec(90-69) Cose31-Cosec31=0
Sin theata = cos (90 - theata) So, Sin 18° =cos (90°- 18°) =cos 72° Cos 72°/cos72° =1
16367.

Given seco=13/12, calculate all trigonometrc ratios.

Answer» Consider a triangle ABC in which {tex}\\angle A = \\theta {/tex}\xa0and {tex}\\angle B = {90^o}{/tex}Let AB = 12k and AC = 13kThen, using Pythagoras theorem,\xa0{tex}BC=\\sqrt { ( \\mathrm { AC } ) ^ { 2 } - ( \\mathrm { AB } ) ^ { 2 } } = \\sqrt { ( 13 k ) ^ { 2 } - ( 12 k ) ^ { 2 } }{/tex}{tex}= \\sqrt { 169 k ^ { 2 } - 144 k ^ { 2 } } = \\sqrt { 25 k ^ { 2 } } = 5 k{/tex}{tex}\\therefore {/tex}\xa0{tex}\\sin \\theta = \\frac { B C } { A C } = \\frac { 5 k } { 13 k } = \\frac { 5 } { 13 }{/tex}{tex}\\cos \\theta = \\frac { A B } { A C } = \\frac { 12 k } { 13 k } = \\frac { 12 } { 13 } \\tan \\theta = \\frac { B C } { A B } = \\frac { 5 k } { 12 k } = \\frac { 5 } { 12 }{/tex}{tex}\\cot \\theta = \\frac { A B } { B C } = \\frac { 12 k } { 5 k } = \\frac { 12 } { 5 } \\cos e c \\theta = \\frac { A C } { B C } = \\frac { 13 k } { 5 k } = \\frac { 13 } { 5 }{/tex}
Sec theata = hypotenuse/ baseSo, base =12 Hypotenuse=13Prependicular =√( hypotenuse)2 - ( base)2 √(13)2-(12)2=√169-144=√25 =5 Sin theata =P/H =5/13Cos theata=B/H =12/13Tan theata=P/B =5/12Cot theata=B/P =12/5Cosec theata= H/P = 13 /5
SecA=H/B,Here secA=13/12So, H=13 and B=12 We know that, P2=H2-B2P2=164-144P2=25P=5Now, All trignometric ratiosSinA=P/H=5/13CosA=B/H=12/13TanA=P/B=5/12CosecA=H/P=13/5CotA=B/P=12/5
16368.

Why sin value of p/h. perpendicular /hypotnese

Answer» If you go on Quora digest you got it
16369.

-1.2,-3.2,-5.2,-7.2

Answer» It is an AP because the common difference are -2
This is in AP having the common difference of -2
what want to find bo in this question
The series decreased by 2 rapidly
What it mean bro
16370.

Costheta + sintheta = √2costheta prove that costheta - sintheta = √2sintheta

Answer» Squaring** Lhs**
You can prove it by a square ring on both side and then arrange the lhf in the form of cos theta minus sin theta ka whole square
16371.

If TanA+SinA=m and, TanA-SinA=n Then, prove that:- m2-n2=4 under root mn

Answer» Squaring both the equation and then subtract each other with as LHS with LHS and RHS with RHS
16372.

How i can improve maths

Answer» Thanks
Perfect practice makes man perfect so by regular practice you can do it
By spending more time ? in maths
Don\'t solve it simply enjoy it and solve you will improve in maths
And regular revision of all theorems and its application
By improving your calculation
16373.

Let me know to how can i get standard and badic maths questions paper model plz

Answer»
16374.

√2x+√3y=0

Answer»
16375.

Standard paper model

Answer» Khud dhundle mujhe pareshan matkar
16376.

Tan70=ta20+2tan50 prove that

Answer»
16377.

Find the roots of the equation x^2 + x -p(p+1) = 0

Answer» If p=1,x= -2 or1
16378.

√5×78 it is rational

Answer» No
No , it is irrational
16379.

Prove that √5 is the irrational

Answer» No
Lol Raghu
Not bad
16380.

In maths chapter 4 having completing the square method or nott in board exams

Answer» in CBSE board exam 2019 may be completing the square method will not come?
What r u asking , your query is not clear
I am not understanding you plz say clearly
16381.

Tan² theta minus one by cos square theta = -1

Answer» Anjali\'s ans is correct.
Consider tan²theta - 1/cos²theta Tan²theta -sec²theta ....(1/cos²theta =sec²theta) identity Therefore tan²theta -sec²theta =-1...(1+tan²theta=sec²theta therefore tan²theta -sec²theta =-1)Hence proved.
16382.

How to find the zeros

Answer» First factorise the one zero and then the answer is divided by the equation and divided anwer is factorise thrn you have the zerous???? I think you understand
By using splitting middle term method and D=b²-4ab formula.
Using splitting method and descrimnen(d)=b2-4ac
By using middle term splitting and \'D\' method
16383.

Tan45.sin60.sec40.cos90

Answer» My Answer is. 0
16384.

Tan30°•sec45°+tan60°•sec30°

Answer» How?
Root6+6 whole divided by 3
16385.

Explain why 7×11×13+13 and7×6×5×4×3×2×1+5

Answer» a))Take 13 as common in 7×11×13+13=13(7×11+1)=13×78=13×13×6So it has more than 2 factor so it is a composite number.b))Take 5 as common in 7×6×5×4×3×2×1+5=5(7×6×4×3×2+1+1)=5(1008+1)=5×1009Therefor it has more than 2 factor . so it is a composite number.
Firstly take 13 common and second 5 solve their equation
16386.

441/140 is a rational number with terminating expansion or not

Answer» It is a terminating expansion with ans 3.15
Terminating
16387.

Prove that 2 is not equal to 0

Answer» 1+1=2where 1 is greater than 0then 2 is more greater than 0Hence,2 is not equal to 0
16388.

value of tan A sq -1

Answer» -sec²A
16389.

Sin tan cos ka vastavik

Answer»
16390.

3+2 y = k

Answer» Put y= 1 then k=5 and if we put y=2 yhen k=7
16391.

भाज्य bhajya sankhya Kise kehte hain

Answer» You ask me
16392.

what is quadratic formula ?

Answer» -b+_|b^2-4×a×b÷2a
_b+√d/2a_b-√d/2a
-b±|b^2-4ac/2a
16393.

1/cosecA -cot A -1/sin A =1/sin A -1/cosec A +cot A

Answer»
16394.

Crogruence of triangle

Answer» Angle sides are equal
Angles ,sides is equal
16395.

Factorise 12( 4x - 1/4x)^2 + 5(4x - 1/4x) -2

Answer»
16396.

Ncrt 12.3 exercise

Answer» Check\xa0NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
16397.

Koi ladki reply krna plz

Answer» App kon ho
Oo snehil ..kitni der baad aaye
Hi
kyu
16398.

Find the sum of odd number between 50 and 100

Answer» 1875
50
Ok
Please help!
16399.

Degree of p(x) = x + root of(x^2 +1)

Answer» 1
1
-1/2
16400.

If angle of elevation of 50 metre high building from a point on the groung is 30

Answer» Please complete the question.