Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

16401.

Prove that Root 5 irrational

Answer» If possible,Let √5 be rational√5=a/b where a and b are integers and co-prime.On squaring both sides,(√5)²=(a/b)²5=a²/b²a²=5b²_(¹)Clearly,5 is a factor of a²Then 5 is also a factor of a.a=5mOn squaring both sides,a²=(5m)²a²=25m²5b²=25m²[From eq(¹)]b²=5m²Clearly,5 is a factor of b²5 is a factor of b.Here,a and b are integers where 5 is a factor of both the integers.So,there is a contradiction arisened 5 is not a co-prime no.Hence,√5 is irrational (By contradiction method)
16402.

Question number 8 of Exercise 4.3

Answer» D=360 km Original speed =x km /hIf speed=x+5 km/hATQSpeed=distance÷timeSO, Original time=360 ÷xAnd New time=360÷x+5Now as per ques Original time - 1=new time Or Original time - new time =1So,(360÷x) - (360÷x+5) =1
16403.

Solve the eq using factorisation : X2 -4ax +4a2-b2 =0

Answer» X^2-4ax +4a^2=b^2X2-2ax-2ax+4a2=b2X(x-2a)-2a(x-2a)=b2(x-2a)(x-2a)=b2(X-2a)(x-2a-b2)Hence,these are the factors
16404.

1/x-1/1-2 one upon x minus one upon x minus 2 is equal to 3 X is not equal to zero two

Answer»
16405.

4×2

Answer»
16406.

Write down the decimal expansion 16/3125 without actual division.

Answer» Sorry that emoji is ? * not?
3125=5^5 Prime factorisation of 3125 is in the form of 2^n×5^m Therefore, 16/3125 has terminating decimal expansion?
2^4 ÷ 5^5
16407.

Any five sum related to surface areas

Answer»
16408.

4q-72q-45q-20q=-15+63

Answer» 48/133
16409.

If the points a(x,2) b(-3,-4)c(7,-5) are collinear then find the value of x

Answer» Since the points are collinear, then,\xa0Area of triangle = 0{tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right] = 0{/tex}{tex}\\frac { 1 } { 2 } [ x ( - 4 + 5 ) + ( - 3 ) ( - 5 - 2 ) + 7 ( 2 + 4 ) ] = 0{/tex}x + 21 + 42 = 0x = -63
16410.

Given d=5,s9=75 find a and an

Answer» d=5 S9=75So 75=9/2(2a+8*5)150=18a+36018a=150-36018a=-210a=-210/18=-11.67an=-11.67+(n-1)*5=-11.67+5n-5an=5n-16.67
16411.

how to do calculation fast in finding mean of ungrouped data

Answer» Use formula sigma.fi×xi/sigma.fi
16412.

Distance between the point (0,5 )and (- 5,0)

Answer» (X^2-x^1)+(y^2-y^1)(-5-0)^2+(5,0)^2(5)^2+(5)^225+2550
Answer is 50
6
16413.

7x square+30+8

Answer» 87 is the answer
The answer is simple You have square the number seven and add with thirty and eight(7×7)+30+849+3887
16414.

Write the conditions are set the pair of linear equation has no solution

Answer» a1/a2=b1/b2 but not equal to c1 by c2
16415.

What is sino

Answer» 0
16416.

Express the trigonometry ratioes sin a,tan a,in terms of cot a

Answer» We have to express the trigonometric ratios sin A, sec A\xa0and tan A\xa0in terms of cot A.For sin A,By using identity {tex}cosec ^ { 2 } A - \\cot ^ { 2 } A = 1{/tex}{tex}\\Rightarrow cosec ^ { 2 } A = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\frac { 1 } { \\sin ^ { 2 } A } = 1 + \\cot ^ { 2 } A{/tex}{tex}\\Rightarrow \\sin ^ { 2 } A = \\frac { 1 } { 1 + \\cot ^ { 2 } A }{/tex}{tex} \\Rightarrow \\quad \\sin A = \\frac { 1 } { \\sqrt { 1 + \\cot ^ { 2 } A } }{/tex}For tan A,{tex} \\tan A = \\frac { 1 } { \\cot A }{/tex}
16417.

Write a rationsl and irrational number between root 2 and root 3

Answer» 1.5 --rational1.50550555055550..... irrational
16418.

2^x+3^y=17and 2^x+2-3^y+1=5 then find the value of x and y

Answer» Here; 2^x+3^y=17 (i) 2^x+2-3^y+1=5 2^x-3^y+3=5 2^x-3^y=5-3 2^x-3^y=2 (ii)Adding (i) and (ii) to get : 2^x+3^y+2^x-3^y = 17+2 4^x=19 x=19/4Putting x=19/4 in (i) : 2×19/4 +3^y=17 19/2+3^y=17 3^y=17-19/2 3^y=15/2 y=5/2
Sorry, but you have to wait tonight i will answer you tommorow at 1 pm
Give me amswer
16419.

If a=sinA and y= b tanA then prove that a^2y^2-b^2x^2= x^2y^2

Answer»
16420.

Important questions of ch-1

Answer» All
16421.

If tanA + secA =l prove that secA= l^2+1/2l

Answer» tanA + secA =l\xa0or secA+tanA= I ---------------------(1)We know\xa0that\xa0{tex}\\sec^2\\mathrm A-\\tan^2\\mathrm A=\\mathrm 1-------(2){/tex}Dividing (2) by (1) we get{tex}\\begin{array}{l}\\frac{\\sec^2\\mathrm A-\\tan^2\\mathrm A}{\\mathrm{secA}+\\mathrm{tanA}}=\\frac1{\\mathrm I}\\\\\\mathrm{secA}-\\mathrm{tanA}=\\frac1{\\mathrm I}-----------(3)\\end{array}{/tex}Adding (1) and (3) we get{tex}\\begin{array}{l}2\\mathrm{secA}=\\mathrm I+\\frac1{\\mathrm I}\\\\2\\mathrm{secA}=\\frac{\\mathrm I^2+1}{\\mathrm I}\\\\\\mathrm{secA}=\\frac{\\mathrm I^2+1}{2\\mathrm I}\\\\\\mathrm{Hence}\\;\\mathrm{proved}\\end{array}{/tex}
16422.

prove that tan cube theta -1 / tan theta - 1 = secant square theta + tan theta

Answer»
16423.

Ex_6.5 1,2,3,4,5,6,7,8,9,10 sum

Answer» You can check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
16424.

Chapter -6 integers class6

Answer» Check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
16425.

Why in trignometry the angle should only be in 90 degree?

Answer» Ratios can be found on principle of pythagoras theorem
16426.

Is the important questions which are available in this app are really Important?

Answer» Yes
16427.

Find the zeroes of the polynomial 6x2-7x-3

Answer» =6x²-7x-3=6x²+2x-9x-3=2x(3x+1)-3(3x+1)=(2x-3)(3x+1)⇒2x-3=0 ⇒3x+1=0⇒x=3/2 ⇒x= - 1/3α=3/2 ,β= - 1/3
16428.

Explain chapter =1exercise =1.1 in Hindi

Answer» Check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
16429.

The latgest number whivh divides 615 and 963 leaving reminder 6 in each case

Answer» 615-6=609. 963-6= 957. 615=3×7×29. 963= 3×11×29. HCF= 3×29=87.
16430.

I have questions regarding how to make such word problems equations in chapter 3

Answer» Let the no of item of any substance be xAnd other yThen put the value in equation
16431.

If α & β are zeroes of ax^2+bx+c then find polynomial whose zeroes are 1/α and 1/β

Answer» a/c
16432.

If a=pq×q and b=pppq then find the lcm of a and b

Answer» The LCM is p^3q^2
P^3q^2
16433.

What is the Syllabus of Math for Mid Term Examination .

Answer» Ch 1 to 8
Chapter 1,2,3,4,5,6,7 and 14,15 in murlidhar D. A. V
Ch123681116
16434.

13.1 8th question

Answer»
16435.

I have doubts in forming the equation in quadratic equation can anyone explain

Answer» What is doubt
First read given statement carefully and then make your equation in the form of (axsquare+bx+c)
The standard form is ax square+bx+c
first check what is in a questionchoose a question and now
yes
16436.

If the mean of 5 observations x,x+2,x+4,x+6 and x+8 is 11 , find the value of x.

Answer» X=7
x=9
16437.

Important formula

Answer» Of what
16438.

Obtain all zeroes of 3x⁴-15x³+13x²+25x-30 if two of it\'s zero\'s are √5/3 and -√5/3

Answer» We have the polynomial f(x) = (3x4 - 15x3 + 13x2 + 25x - 30).Since\xa0{tex}\\sqrt { \\frac { 5 } { 3 } } \\text { and } - \\sqrt { \\frac { 5 } { 3 } }{/tex}\xa0are the zeros of f(x),i.e.,\xa0{tex}x=-\\sqrt{\\frac53}{/tex}\xa0and {tex}x=\\sqrt{\\frac53}{/tex}i.e.,\xa0{tex}x+\\sqrt{\\frac53}=0\\;and\\;x-\\sqrt{\\frac53}=0{/tex} so it follows that eachone of\xa0{tex}\\left( x - \\sqrt { \\frac { 5 } { 3 } } \\right) \\operatorname { and } \\left( x + \\sqrt { \\frac { 5 } { 3 } } \\right){/tex}\xa0is a factor of f(x).so using\xa0{tex}\u200b\u200b\\left(a+b\\right)\\left(a-b\\right)=a^2-b^2{/tex}, we get{tex}\\therefore \\quad \\left( x - \\frac { \\sqrt { 5 } } { \\sqrt { 3 } } \\right) \\left( x + \\frac { \\sqrt { 5 } } { \\sqrt { 3 } } \\right) = 0 \\Rightarrow \\left( x ^ { 2 } - \\frac { 5 } { 3 } \\right)= 0 \\Rightarrow \\frac { \\left( 3 x ^ { 2 } - 5 \\right) } { 3 }= 0{/tex}\xa0is also a factor of f(x).Consequently, (3x2\xa0- 5) is a factor of f{x).On dividing the polynomial by (3x2 - 5), we get{tex}\\therefore{/tex}\xa0f(x) = 3x4 - 15x3 + 13x2 + 25x - 30= (3x2\xa0- 5 )(x2\xa0- 5x + 6).By middle term factorisation. We get,={tex}\\left(3x^2-5\\right)\\left(x^2-2x-3x+6\\right){/tex}=({tex}\\lbrack(\\sqrt{3x})^2-\\left(\\sqrt5\\right)^2\\rbrack{/tex}{tex}\\left[x\\left(x-2\\right)-3\\left(x-2\\right)\\right]{/tex}By using\xa0{tex}a^2-b^2=\\left(a+b\\right)\\left(a-b\\right){/tex}we get,{tex}= ( \\sqrt { 3 } x + \\sqrt { 5 } ) ( \\sqrt { 3 } x - \\sqrt { 5 } ) ( x - 2 ) ( x - 3 ){/tex}{tex}\\therefore{/tex}\xa0f(x) = 0 , so either factors can equated to zero to get the roots\xa0{tex}\\Rightarrow ( \\sqrt { 3 } x + \\sqrt { 5 } ) = 0 \\text { or } ( \\sqrt { 3 } x - \\sqrt { 5 } ) = 0{/tex}{tex}\\Rightarrow{/tex}(x - 2) = 0 or (x - 3) = 0{tex}\\Rightarrow x = - \\sqrt { \\frac { 5 } { 3 } } \\text { or } x = \\sqrt { \\frac { 5 } { 3 } }{/tex}\xa0or x = 2 or x = 3Hence, we get all zeros of f(x) are\xa0{tex}\\sqrt { \\frac { 5 } { 3 } } , - \\sqrt { \\frac { 5 } { 3 } }{/tex}, 2 and 3.
16439.

Why the values of trigonometry can\'t changed???

Answer»
16440.

RAT=42 and CAT=57 then LATE=

Answer» Can u please upload the solution please
72
70
16441.

i want blueprint of cbse exam

Answer»
16442.

Which chapter come in final

Answer» Whole chapters of all subjects except Social Science
16443.

Number of terms

Answer» an=a(n-1)d
16444.

a1x +b1y +c1=0a2x +b2y +c1=0

Answer» The question itself is wronga1x +b1y +c1=0 & a2x +b2y +c2 /_____/
16445.

What is the formula for acute angle triangle of one side square is equal to?

Answer»
16446.

I want a set of questions of class 11 relations and functions

Answer»
16447.

Sum and products of zeroes of quadratic polynomial are -1/4 & 1/2 respectively. Find the polynomial.

Answer» Sum= -1/4 product= 1/2 use formula make quadratic polynomial formula is x² - (sum of zeroes)x +(product of zeroes) putting the value x²- (-1/4)x + (1/2) ans ayega x² + 1/4+1/2. Fir hum multiply krege 4 se jisse divide ki value chali jaye like 4x²+ 4× 1/4 + 4×1/2 to humare pss equation ayegi 4x²+ x +2 ye humara quadratic polynomial banega
(a+b)=-1/4(ab)=1/2Putting the value of (a+b),(ab).P(x)=x2+( a +b)x-(ab) x2-1/4x-1/24x2-1x-2hence the polynomial is 4x2-1x-2
16448.

All the formulas of trignometry

Answer»
16449.

What is polynomial

Answer» A polynomial looks like this:\texample of a polynomial this one has 3 terms\tPolynomial\xa0comes from\xa0poly-\xa0(meaning "many") and\xa0-nomial\xa0(in this case meaning "term") ... so it says "many terms"A polynomial can have:\tconstants\xa0(like\xa03,\xa0−20, or\xa0½)variables\xa0(like\xa0x\xa0and\xa0y)exponents\xa0(like the 2 in y2), but only\xa00, 1, 2, 3, ...\xa0etc are allowed\t
Combination of constant and variable with +,-,×,÷ sign are polynomials
16450.

tan(A-B)=tanA-tanB /1+tanA*tanB

Answer» Isko prof krna h ya value nikalni hai
1