Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

16751.

Find sum 2_12_22?

Answer» 60
16752.

If the system of equations kx- 5y=2, 6x+2y=7has no sol. then k=

Answer» What do you mean?
Can any one tell question
16753.

CNN you tell some question

Answer» ?
Determine graphically the coordinates of the verticesof a triangle whose sides are graphically of the question
16754.

Show that cubic root 3 is irrational

Answer» If wecubic is3 than it is 27
16755.

a6=5a and a11=2a5+3 . find a8

Answer» a6_ 5a= 1a
16756.

Of alpha and beta are the zeroes f(x) = x square + X + 1, then find 1/alpha + 1/beta.

Answer»
16757.

if α,β are zeros of ax square-bx+c , find α+β

Answer» -b/a
16758.

Cos37degreecosec53degree

Answer» = cos 37° cosec 53°= cos(90° - 53°) cosec 53°= sin 53° cosec 53°= sin 53° .\xa0{tex}\\frac{1}{sin 53^ \\circ}{/tex}= 1
16759.

Find tansquare 60 +2+tan square 45°

Answer» = tan260° + tan245°= ({tex}\\sqrt 3{/tex})2\xa0+ (1)2= 3 + 1= 4
16760.

Ex 3.1 ka 1 question

Answer» Go to the solution option in maths subject option........
16761.

Divide 4500 into two parts such that 10%of the first is equal ti 5% of the second part

Answer» First part:1500Second part is:3000
16762.

HCF of smallest composite number and smallest prime number

Answer» Smallest composite number 4Smallest prime number 2..So HCF equals 2..
4
16763.

Show that n square minus 1 is divisible by 8 if n is an odd positive integer

Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8.
16764.

Show that n square minus 1 by 8

Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8.
16765.

Show that 2*3*5*13*17+13 a composite number

Answer» As this expression can be simplified as 13(2*3*4*5*17+1) this shows that 13 is a factor of yhis expression and hence it is composite
16766.

How to cheack a number is aterm of the list of numbers

Answer»
16767.

IF -2 is a root of the equation 3x^2 - 5x +2k =0, find the value of k

Answer» We have the following equation,\xa0{tex}3x^2-5x+2k=0{/tex}Putting x = -23(-2)2\xa0- 5(-2) + 2k = 0{tex}\\Rightarrow{/tex}\xa012 + 10 + 2k = 0{tex}\\Rightarrow{/tex}\xa022 + 2k = 0{tex}\\Rightarrow{/tex}\xa0k =\xa0{tex}\\frac{-22}{2}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0k = -11
16768.

What is the new syllabus of class 10 math Sessions 2019-2020

Answer» Check syllabus here :\xa0https://mycbseguide.com/cbse-syllabus.html
16769.

Table of 7

Answer» 7 × 1 = 77 × 2 = 147 × 3 = 217 × 4 = 287 × 5 = 357 × 6 = 427 × 7 = 497 × 8 = 567 × 9 = 637 × 10 = 70
16770.

4x^2 +5 underoot 2x-3Solve this

Answer»
16771.

LCM of 18,20,9

Answer» LCM of 18 , 20, 9 is 180.
16772.

6x+5y=7x+3y+1=2(x+6y-1) Find the value of x and y.

Answer» x=17and y=10
6x+5y=2(x+6y-1)6x+5y=2x+12y-26x-2x+5y-12y=-24x-7y=-2 ------------------(1)Again,7x+3y+1=2(x+6y-2)7x+3y+1=2x+12y-47x-2x+3y-12y=-4-15x-9y=-5 -------------------(2)Multiplying eqt.(1) by 5 and (2) by 4 20x-35y=-10 20x-36y=-20 ~~+~~~+~ y=10 Put y=10 in any eqt. 4x-7y=-2 4x-7×10=-2 4x=-2+70 x=68/4=17
16773.

Make polynomials whose zeroes are given2,3

Answer» I mean (x^2-5x+6) is answer
x^2-(2+4)x+(2×4) X^2-5x+6 is answer.
Answer
16774.

Using Euclid\'s division algorithm to find the HCF of: 56,9, and404

Answer» 96=56×1+4056=40×1+1640=16×2+816=8×2+0HCF=8404=8×50+48=4×2+0HCF(56,96,404)=4
16775.

Find the centroid of the triangle whose vertices are (3, - 7), (-8,6) & (5,10).

Answer» Let A , B and C are three vertices ofthe triangle ( x1 , y1 ) = A ( 3 , - 7 )( x2 , y2 ) = B ( - 8 , 6 )( x3 , y3 ) = C ( 5 , 10 )Centroid ( G ) = ( x1+x2+x3/3 , y1+y2+y3/3 )= ( 3-8+5/3 , -7+6+10/3 )= ( 0 , 9/3 )= ( 0 , 3 )G = ( 0 , 3 )
16776.

9x2-9(a+b)x+(2a2+5ab+2b2)=0

Answer» D = b2 - 4ac{tex}= ( - 9 ( a + b ) ) ^ { 2 } - 4 \\times 9 \\times \\left( 2 a ^ { 2 } + 5 a b + 2 a b ^ { 2 } \\right){/tex}= 81(a + b)2 - 36(2a2 + 5ab + 2b2)= 9[9(a2 + b2 + 2ab - 8a2 - 20ab - 8b2)]= 9[a2 + b2 - 2ab]= 9(a - b)2{tex}x = \\frac { - b \\pm \\sqrt { D } } { 2 a } = \\frac { 9 ( a + b ) \\pm \\sqrt { 9 ( a - b ) ^ { 2 } } } { 2 \\times 9 }{/tex}{tex}{ \\Rightarrow x = 3 \\frac { [ 3 ( a + b ) \\pm ( a - b ) ] } { 2 \\times 9 } }{/tex}{tex}{ \\Rightarrow x = \\frac { ( 3 a + 3 b ) \\pm ( a - b ) } { 6 } }{/tex}{tex}\\Rightarrow x = \\frac { 3 a + 3 b + a - b } { 6 } \\text { or } x = \\frac { 3 a + 3 b - a + b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 4 a + 2 b } { 6 } \\text { or } x = \\frac { 2 a + 4 b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 2 a + b } { 3 } \\text { or } x = \\frac { a + 2 b } { 3 }{/tex}
16777.

Solve by cross multiplication method 5ax + 6by = 28 3ax + 4by = 18

Answer» The systems of equations are:5ax + 6by = 28 .......................(i)3ax + 4by = 18 .......................(ii)From (i) and (ii), we geta1 = 5a, b1 = 6b, c1 = -(28)a2 = 3a, b2 = 4b, c2 = -(18)By cross multiplication method, we get{tex}\\frac{x}{{-108b +112b}} = \\frac{{ - y}}{{ - 90a + 84a }} = \\frac{1}{{20ab - 18ab}}{/tex}{tex}\\frac{x}{{4b}} = \\frac{{ - y}}{{ - 6a}} = \\frac{1}{{2ab}}{/tex}Now, {tex}\\frac{x}{{4b}} = \\frac{1}{{2ab}} {/tex}{tex}⇒ x = \\frac{2}{a}{/tex}And, {tex}\\frac{{ - y}}{{ - 6a}} = \\frac{1}{{2ab}} {/tex}{tex}⇒ y = \\frac{3}{b}{/tex}Therefore the solution of the given system of equation is {tex}\\frac{2}{a}{/tex}\xa0and {tex}\\frac{3}{b}{/tex}.
16778.

Solve by cross multiplication method 1. x/a + y/b =a+b x/a2 + y/b2 =2

Answer» The given equations are:{tex}\\frac{x}{a}{/tex}\xa0+\xa0{tex}\\frac{y}{b}{/tex}\xa0{tex}=(a+b){/tex}\xa0{tex}\\Rightarrow{/tex}{tex}bx + ay = ab(a + b){/tex}{tex}\\Rightarrow{/tex}{tex}bx + ay - ab(a + b) = 0{/tex} ....(i)and\xa0{tex}\\frac { x } { a ^ { 2 } } + \\frac { y } { b ^ { 2 } } = 2{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}b^2x + a^2y = 2a^2b^2{/tex}\xa0{tex}\\Rightarrow{/tex}{tex}\xa0b^2x + a^2y -2a^2b^2 = 0{/tex}....(ii)From eq. (i) and (ii), we get{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { x } { - 2 a ^ { 3 } b ^ { 2 } + a ^ { 3 } b ( a + b ) }{/tex}\xa0=\xa0{tex}\\frac { - y } { - 2 a ^ { 2 } b ^ { 3 } + a b ^ { 3 } ( a + b ) }{/tex}\xa0=\xa0{tex}\\frac { 1 } { a ^ { 2 } b - a b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { x } { - a ^ { 3 } b ( 2 b - a - b ) }{/tex}\xa0=\xa0{tex}\\frac { - y } { - a b ^ { 3 } ( 2 a - a - b ) }{/tex}\xa0=\xa0{tex}\\frac { 1 } { a b ( a - b ) }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { x } { - a ^ { 3 } b ( b - a ) }{/tex}\xa0=\xa0{tex}\\frac { y } { a b ^ { 3 } ( a - b ) }{/tex}\xa0=\xa0{tex}\\frac { 1 } { a b ( a - b ) }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x = \\frac { a ^ { 3 } b ( a - b ) } { a b ( a - b ) }{/tex}\xa0= a2; {tex}y = \\frac { a b ^ { 3 } ( a - b ) } { a b ( a - b ) } = b ^ { 2 }{/tex}The solution is {tex}x = a^2, y\xa0= b^2{/tex}\xa0.
16779.

Compartment sample paper

Answer»
16780.

×_10×+20=0

Answer»
16781.

Compartment exam question sir please

Answer»
16782.

ax + by = (a + b)\\ 2 ; 3x + by = 5Solve for x and y

Answer» I can solve
16783.

1/2(x+y) + 5/3(3x-2y)=-3/25/4(x+2y) - 3/5(3x-2y)=61/60

Answer» The given equations are{tex}\\frac { 1 } { 2 ( x + 2 y ) } + \\frac { 5 } { 3 ( 3 x - 2 y ) } = - \\frac { 3 } { 2 }{/tex}.....(1)and\xa0{tex}\\frac { 5 } { 4 ( x + 2 y ) } - \\frac { 3 } { 5 ( 3 x - 2 y ) } = \\frac { 61 } { 60 }{/tex}....(2)Putting\xa0{tex}\\frac 1{x+2y}{/tex}=u and\xa0{tex}\\frac 1{3x-2y}{/tex}= v in equation (1) & equation (2) so that we may get two linear equations in the variables u & v as following:-\xa0{tex}\\frac { 1 } { 2 } u + \\frac { 5 } { 3 } v = - \\frac { 3 } { 2 }{/tex}.....................(1){tex}\\frac { 5 } { 4 } u - \\frac { 3 } { 5 } v = \\frac { 61 } { 60 }{/tex}.................(2)Multiplying (1) by 36 and (2) by 100, we get{tex}{/tex}{tex}{/tex}{tex}18u + 60v = -54{/tex}...............(3){tex}125 u - 60 v = \\frac { 305 } { 3 }{/tex}.............(4)Adding (3) and (4),we get{tex}143 u = \\frac { 305 } { 3 } - 54 = \\frac { 305 - 162 } { 2 } = \\frac { 143 } { 3 }{/tex}{tex}\\therefore \\quad u = \\frac { 1 } { 3 } = \\frac { 1 } { x + 2 y }{/tex}{tex}\\therefore{/tex}{tex} x + 2y = 3{/tex}...........(5)Putting value of u in (3), we get{tex}1 + 10v = -9{/tex} (after dividing by 3){tex}\\therefore 10 \\mathrm { v } = - 10{/tex}\xa0or\xa0{tex}\\mathrm { v } = - 1 {/tex}{tex}\\Rightarrow - 1 = \\frac { 1 } { 3 x - 2 y }{/tex}{tex}\\Rightarrow 3 x - 2 y = - 1{/tex}......(6)Adding (5) and (6), we get{tex}4 x = 2 \\quad{/tex}{tex} \\therefore x = \\frac { 1 } { 2 }{/tex}Putting value of x in (5),{tex}\\frac { 1 } { 2 } + 2 y = 3{/tex}{tex} \\text { or } 2 y = 3 - \\frac { 1 } { 2 } = \\frac { 5 } { 2 }{/tex}{tex}\\therefore \\quad y = \\frac { 5 } { 4 }{/tex}The required solution is\xa0{tex}\\mathrm { x } = \\frac { 1 } { 2 } , \\mathrm { y } = \\frac { 5 } { 4 }{/tex}
16784.

Can\'t we get answers of practice papers given here

Answer» Ok
No
16785.

Match chapter 1 .2 quetion no 3

Answer» Please specify questions...are you talking about NCERT?
16786.

Which of the following is quadratic equation

Answer» Where are the quadratic equation [email\xa0protected]?
16787.

How to find hcf lab manual work

Answer»
16788.

Prove root 3 is an irrational

Answer» let root 3 is rational number. root 3=p/q [where,p and q are integers,q is not equal to 0 and p and q are co-primes]. root 3q=p squaring both sides, 3q2 =p2...............[1] 3 divides p2 3 divides p.............[2] p2=3q2 p2=3m Put the value of p2 in eqn [1]. p2=3q2 [3m]2=3q2 9m2=3q2 3m2=q2 q2=3m2 3 divides q2 3 divides q [3] By eqn [2] and [3].... 3 is the common factor of both p and q . This is contradiction that and q are co-primes. Our assumption is wrong. Hence , root 3 is irrational number.
\xa0let us assume that\xa0{tex}\\sqrt 3{/tex}\xa0be a rational number.{tex}\\sqrt { 3 } = \\frac { a } { b }{/tex}, where a and b are integers and co-primes and b{tex} \\neq{/tex}0Squaring both sides, we have{tex}\\frac { a ^ { 2 } } { b ^ { 2 } } = 3{/tex}or,\xa0{tex}a ^ { 2 } = 3 b ^ { 2 }{/tex}--------(i)a2\xa0is divisible by 3.Hence a is divisible by 3..........(ii)Let a = 3c ( where c is any integer)squaring on both sides we get(3c)2\xa0= 3b29c2\xa0= 3b2b2\xa0= 3c2so b2\xa0is divisible by 3hence, b is divisible by 3..........(iii)From equation(ii) and (iii), we have3 is a factor of a and b which is contradicting the fact that a and b are co-primes.Thus, our assumption that\xa0{tex}\\sqrt 3{/tex} is rational number is wrong.Hence,\xa0{tex}\\sqrt 3{/tex}\xa0is an irrational number.
16789.

Prove that cosO ÷ 1- tanO + sinO ÷ 1- cotO = sinO + cosO

Answer»
16790.

Can anyone give me suggestions for making maths model for class 10

Answer» There is no competition in our school . Project is for holiday homework
What type of math model is there any type of competition in your school? ?????
16791.

9 sec A-9 tan A

Answer»
16792.

solve these equations 24/(×-y)+28/(×+y)=6

Answer»
16793.

SHow that cube of any natural no. Is in the form of 4q,4q+1,4q+3.

Answer»
16794.

What is the product of the HCF and LCM of the smallest prime number and smallest composite number?

Answer» 16
16795.

why is an AP series called so?

Answer» It is short form of Arithmetic Progression
16796.

3 pairs of numbers whose square of the highest is equal to the other 2 numbers other than 3,4&5

Answer»
16797.

Prove that the points A(1,7) B(4,2) C(-1,-1) D(-4,4) are the vertices of a square

Answer» Let A(1, 7), B(4, 2), C(-1, -1) and D(-4, 4) be the given points. One way of showing that ABCD is a square is to use the property that all its sides should be equal both its diagonals should also be equal. Now,{tex}A B = \\sqrt { ( 1 - 4 ) ^ { 2 } + ( 7 - 2 ) ^ { 2 } } = \\sqrt { 9 + 25 } = \\sqrt { 34 }{/tex}{tex}B C = \\sqrt { ( 4 + 1 ) ^ { 2 } + ( 2 + 1 ) ^ { 2 } } = \\sqrt { 25 + 9 } = \\sqrt { 34 }{/tex}{tex}C D = \\sqrt { ( - 1 + 4 ) ^ { 2 } + ( - 1 - 4 ) ^ { 2 } } = \\sqrt { 9 + 25 } = \\sqrt { 34 }{/tex}{tex}D A = \\sqrt { ( 1 + 4 ) ^ { 2 } + ( 7 - 4 ) ^ { 2 } } = \\sqrt { 25 + 9 } = \\sqrt { 34 }{/tex}{tex}A C = \\sqrt { ( 1 + 1 ) ^ { 2 } + ( 7 + 1 ) ^ { 2 } } = \\sqrt { 4 + 64 } = \\sqrt { 68 }{/tex}{tex}B D = \\sqrt { ( 4 + 4 ) ^ { 2 } + ( 2 - 4 ) ^ { 2 } } = \\sqrt { 64 + 4 } = \\sqrt { 68 }{/tex}Since, AB = BC = CD = DA and AC = BD, all the four sides of the quadrilateral\xa0ABCD are equal and its diagonals\xa0AC and BD are also equal. Therefore, ABCD is a square.
16798.

Sec70 sin20 +cos20 cosec70=2

Answer» We have,sec 70° sin 20° +\xa0cos 20° cosec 70°= sec (90° - 20°) sin 20° +\xa0cos 20° cosec (90° - 20°)= cosec20° sin20° +\xa0cos20° sec20° [{tex}\\because{/tex}Sec(90°-A)=CosecA & Cosec(90° - A) = SecA ]{tex}= \\frac { \\sin 20 ^ { \\circ } } { \\sin 20 ^ { \\circ } } + \\frac { \\cos 20 ^ { \\circ } } { \\cos 20 ^ { \\circ } }{/tex}. [{tex}\\because{/tex}Cosec A=(1/SinA) & SecA =(1/CosA) ]= 1 +\xa01 = 2
16799.

Kya aj India match jeet sakthi hai

Answer» India win match by 306 runs
Ha ab jeet jayegi
May be ...
Shubh shubh bolo????
Ya
No idea
16800.

All unit test paper 1 solution

Answer»