Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

21551.

If seca + tana =p, then find the value of coseca.

Answer» cosec a = p^2+1 / p^2-1
Cosec a =P-cosa. Cosec a/cosa. Cosec a
21552.

What is the probability of each letters in the word mathematics?

Answer» The probability of each letters in the word mathematics is 1/11
For M=2/11 ,A=2/11, T=2/11and for H,E, I,C,S there is probability of=1/11
1/11
Sorry
1/26
21553.

For what value of k will k+9,2k - 1 and 2k+7 are the consecutive term of an AP ?

Answer» If they are in A.P. Then,. 2b=a+c (where a=first term,b=second term and c=third term). Or,. 2(2k-1)=k+9+2k+7. Or,. 4k-2= 3k+16. Or,. K=18. Hence, For K=18 the following terms are in A.P.
The value of k will be 18.
K = 18
21554.

Sutra

Answer»
21555.

Can anyone solve this 2a+1/3a=6 then 3a+1/2a=?

Answer» Yes, the answer is 19/2
Wrong answer . Correct answer is 9.
Answer is19 / 2
21556.

Use euclid\'s division lemma to prove that n3-n is divisible by 6

Answer» I think its given in NCERT
21557.

बहुपद ज्ञात करने का सूत्र क्या है

Answer»
21558.

Cot 45-cot45

Answer» 0
21559.

1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)=1/6 .SOLVE FOR x.

Answer» We have,{tex}\\frac{1}{{(x - 1)(x - 2)}} + \\frac{1}{{(x - 2)(x - 3)}}{/tex}{tex}+ \\frac{1}{{(x - 3)(x - 4)}} = \\frac{1}{6}{/tex}{tex}\\Rightarrow{/tex}{tex} (x - 3)(x - 4) + (x - 1)(x - 4) + (x - 1)(x - 2) = {/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}[{tex}\\because{/tex} Multiplying both sides by (x -1)(x - 2)(x - 3)(x - 4)]{tex}\\Rightarrow{/tex}\xa0{tex}x^2 - 4x - 3x + 12 + x^2 - 4x - x + 4 + x^2 - 2x - x + 2 ={/tex}{tex}\\frac{1}{6}{/tex}{tex}[(x - 1)(x - 2)(x - 3)(x - 4)]{/tex}{tex}\\Rightarrow{/tex}{tex}3x^2 - 15x + 18 ={/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}3(x^2 - 5x + 6) =\u200b\u200b\u200b\u200b\u200b\u200b\u200b{/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18[x^2 - 3x - 2x + 6] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18[x(x - 3) - 2(x - 3)] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18(x - 3)(x - 2) = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex} 18 = (x - 1)(x - 4){tex}\\Rightarrow{/tex} 18 = x2 - 4x - 1x + 4{tex}\\Rightarrow{/tex} x2 - 5x + 4 - 18 = 0{tex}\\Rightarrow{/tex} x2 - 5x - 14 = 0In order to factorize x2 - 5x - 14, we have to find two numbers \'a\' and \'b\' such that.a + b = - 5 and ab = -14Clearly, -7 + 2 = -5 and (-7)(2) = -14{tex}\\therefore{/tex}\xa0a = -7 and b = 2Now,x2 - 5x - 14 = 0{tex}\\Rightarrow{/tex} x2 - 7x + 2x - 14 = 0{tex}\\Rightarrow{/tex} x(x - 7) + 2(x - 7) = 0{tex}\\Rightarrow{/tex} (x - 7)(x + 2) = 0{tex}\\Rightarrow{/tex} x - 7 = 0 or x + 2 = 0{tex}\\Rightarrow{/tex} x = 7 or x = -2
21560.

Solve 2x+3y=11 and 2×-4y=-24 and hence find the value of \'m\' for which y=m×+3

Answer» First solve for algebraic method, from it u have the value of x & y and then put the value of x & y in given eqn....... Y=mx+3 .... ???
.
x=-2 ,y=5 and m=-1
21561.

If m and n are integers prove that root m + root n are irrational

Answer» First assume √m + √n are rational numberP/q are co-primes √m+√n =p/q√n=p/q -√m√n is irrational therefore √m +√n are irrarional
21562.

2a+1/3a=6 then 3a+1/2a=?

Answer» No one is there to answer my question.
21563.

Do anyone solves RDSharma here?If yes , i want a help pls..

Answer» Thank u guys!! Problem is of page 13.33 exercise 13.3 ques 9 of level 2
I ll solve
Yes I can.
21564.

Show that any positive odd integer is of the form 6q +1 or 6q+3or6q+5where q is integer some integer

Answer» Let a any +ve integer and b=6. Bet. them integers will be 0,1,2,3,4,5 so a=6q,6q+1,6q+2,...............6q+5. But we need only odd integers so 6q+1,6q+3,6q+5 are positive odd integer
21565.

Shraddha Nawale your answer for the question 3a+1/2a=? is wrong . Correct answer is 9.

Answer»
21566.

The points A(1,-2) B(2,3) C(k,-2) D(-4,-3) are the vertices of a parallelogram. Find value of k

Answer» A(1, -2), B(2, 3), C(a, 2) and D(-4, -3)are the vertices of a parallelogram.{tex}\\Rightarrow{/tex}AB = CD and AD = BCConsider AD = BC{tex}\\Rightarrow{/tex}AD2 = BC2{tex}\\Rightarrow{/tex}(-4 -1)2 + (-3 + 2)2 = (a - 2)2 + (2 - 3)2{tex}\\Rightarrow{/tex}(-5)2 = (a - 2)2{tex}\\Rightarrow{/tex}\xa0a - 2 = -5{tex}\\Rightarrow{/tex}\xa0a = -3Area of\xa0{tex}\\Delta A B C = \\frac { 1 } { 2 } | 1 ( 3 - 2 ) + 2 ( 2 + 2 ) - 3 ( - 2 - 3 ) |{/tex}{tex}= \\frac { 1 } { 2 } | 1 + 8 + 15 |{/tex}{tex}= \\frac { 1 } { 2 } \\times 24{/tex}= 12 sq. units.Diagonal of a parallelogram divides it into two equal triangles.Area of parallelogram ABCD = 2\xa0{tex}\\times{/tex}12=24 sq. units{tex}\\Rightarrow {/tex}\xa0AB\xa0{tex}\\times{/tex}Height = 24{tex}\\Rightarrow {/tex}\xa0AB{tex}\\times{/tex}Height = 24{tex}\\Rightarrow \\left[ \\sqrt { ( 2 - 1 ) ^ { 2 } + ( 3 + 2 ) ^ { 2 } } \\right] \\times \\text { Height } = 24{/tex}{tex}\\Rightarrow [ \\sqrt { 1 + 25 } ] \\times \\text { Height } = 24{/tex}{tex}\\Rightarrow \\text { Height } = \\frac { 24 } { \\sqrt { 26 } } = \\frac { 12 \\times \\sqrt { 2 } \\times \\sqrt { 2 } } { \\sqrt { 13 } \\times \\sqrt { 2 } }{/tex}{tex}= \\frac { 12 \\sqrt { 2 } } { \\sqrt { 13 } }{/tex}
21567.

A gulab jamun

Answer» Hb gungun
What is the question???
???
What\'s it????
21568.

Show that the product of two consecutive poditive integers id divisible by 2

Answer» Let n-1 and n be consecutive positive integers,Let P be their productThen {tex}\\style{font-family:Arial}{\\style{font-size:12px}{\\mathrm n(\\mathrm n-1)=\\mathrm n^2-1\\;.................(1)}}{/tex}We know that any positive integers is of the form 2q or 2q + 1, where q is a positive integerCase I: When n = 2q, thenP=n2\xa0- n = (2q)2\xa0- 2q = 4q2\xa0- 2q = 2q(2q - 1)-----(2)Case II: When n = 2q + 1, thenP=n2\xa0- n = (2q + 1)2\xa0- (2q + 1)= 4q2\xa0+ 4q + 1 - 2q - 1= 4q2\xa0+ 2qP = 2q(2q + 1)..........(3)From (2) and (3) we conclude thatThe product of n-1 and n is divisible by 2
21569.

Tan*a+d-c=cotc

Answer»
21570.

2a +1 / 3a = 6 then 3a + 1 / 2a = ?

Answer» Shraddha Nawale well tried but your answer is wrong. The correct answer is 9.
I think iys 19/2
21571.

If the roots of the quadratic equation ax^2 + bx + c = 0 are equal roots thwn show that b^2 = 4ac

Answer» Here given that roots are equal so D or discriminent will 0. hence b^2-4ac=o and b^2=4ac
21572.

How to score good marks in mathematics

Answer» By more practice of questions and do many workbooks
By more and more practicing of questions.
21573.

All the formula of chap: pair of linear equation in two variables.. .

Answer» It is very easy.see your ncert book??
Simply tell that you want formulas of all the chapters.
21574.

All the Formula of chapter : polynomial .......In nicely way . . Plzzz give

Answer» It is in your ncert book
Which polynomia quadratic or cubic
Given in book
21575.

Chapter 9 solution

Answer» Are given in this app
All
21576.

Yeah Pythagoras Theorem Chapter 6 ke

Answer» Pythagoras and converce of pythagoras all in ncert book
21577.

All the Formula of chapter : Real number . In nicely way want plzzzzzzz...... A humble request......

Answer» There are not much formulas in this chaptr
21578.

Define circumcentre and orthocentre

Answer» Circumcentre is the point where all the perpendicular bisectors of a triangle meets and orthocentre is the point of intersection of all the altitudes of a triangle.
21579.

P(x)=4x3-12x2+14x-3by g(x)=2x-1

Answer» 2x - 1= 0x = 1/2So, by putting the value of x = 1/24x3 - 12x2 + 14x - 3= 4 (1/2 )3 - 12 (1/2 )2 + 14 (1/2 ) - 3= 4 (1/8) - 12 (1/4) + 14/2 - 3= 4/8 - 12/4 + 14/2 - 3= 1/2 - 3 + 7 - 3= 1/2 + 1= 1+2 / 2= 3/2 - AnsSo the remainder is 3/2 .
21580.

Why sun is not twinkle while it became a star?

Answer» becoz sun is much nearer in comparision with other star
21581.

The volume of a hemisphere is 2425_1/2 cm3 .. Find its curved surface area

Answer» As, volume of hemisphere = 2425{tex}\\frac { 1 } { 2 } c m ^ { 3 }{/tex}{tex}\\Rightarrow \\frac { 2 } { 3 } \\pi r ^ { 3 } = 2425 \\frac { 1 } { 2 }{/tex}{tex}\\Rightarrow \\frac { 2 } { 3 } \\times \\frac { 22 } { 7 } r ^ { 3 } = \\frac { 4851 } { 2 }{/tex}{tex}\\Rightarrow r ^ { 3 } = \\frac { 4851 \\times 3 \\times 7 } { 2 \\times 2 \\times 22 }{/tex}{tex}\\Rightarrow r ^ { 3 } = \\frac { 441 \\times 3 \\times 7 } { 2 \\times 2 \\times 2 }{/tex}{tex}\\Rightarrow r ^ { 3 } = \\frac { 21 ^ { 3 } } { 2 ^ { 3 } }{/tex}{tex}\\Rightarrow r = \\frac { 21 } { 2 } c m{/tex}So, the curved surface area of the hemisphere ={tex}2 \\pi r ^ { 2 }{/tex}{tex}= 2 \\times \\frac { 22 } { 7 } \\times \\frac { 21 } { 2 } \\times \\frac { 21 } { 2 } = 693 \\mathrm { cm } ^ { 2 }{/tex}
21582.

Find the maximum sum of an ap is 2,4,6,8.

Answer» If it is upto infinity then sum is -1/6
21583.

If secA+tanA=p then prove that P square - 1/p square +1=sinA

Answer» Shift tan to rhs then sq. both the sides then find the value of tan in terms of only p . Put that value in a rt angle? and then prove it.
21584.

How to find the root of irrational number easily?

Answer» Yaa no shortcuts you have to follow all steps
No shortcuts available.....
21585.

√3 value

Answer» 1.732
1.73
21586.

Is full circle guide beneficial for maths??

Answer» Ncert is enough...if u want 99.9 percent in maths then u can prefer..
21587.

Cubic formula

Answer»
21588.

Formula of cubic polynomial

Answer» Let α, β and ɣ be the roots of the cubic polynomialThe cubic polynomial with roots α, β and ɣ is x3 – (α + β + ɣ)x2 + (αβ+ βɣ + ɣα)x – (αβɣ) = 0
21589.

Find perimeter of triangle whose coordinat are (0,4) ,(0,0),(3,0).

Answer» First find length of each sides of ∆ Let A( 4 , 0) B(0, 0) and C (0 , 3) use distance formula, AB =√(4²+0) =4 BC= √(0+3²) = 3CA =√(4²+3²) =5 now ,perimeter of ∆ = 3 + 4 + 5= 12 unit........, hope it will help you.....??
12 unit
21590.

Can you prove collinearity of three points by Section formula?explaine with an example?

Answer» Yes mam,You are correct but by taking m:n u can prove mam
We need to prove the points (3,-2),(5,2) and(8,8) are collinear. A=(3,-2) B=(5,2) C=(8,8) Let The points B divides AC in the ratio of k+1 Then the coordinates will be, (8k+2/k+1,8k+5/k+1) Coordinates of B are (4,6) Comparing we get, 8k+2/k+1=4 and 8k+5/k+1=6 8k+2=4k+4 and 8k+5=6k+6 4k=2 and 2k=1 k=2/4 and k=1/2 k=1/2 and k=1/2 Value of k is same in both x and y directions.Therefore Points A,B,C are collinears.hope it helps u....
21591.

How to derive divisibility rules of 7,13,17,19,23,27,31,37,41,43......etc?

Answer» This can derive by the concept of Osculator.
21592.

What is the draw back of Remainder and Factors theorem?How to over come it?

Answer» If the divisor is not linear polynomial we are unable to apply R.T and F.T ,so we can convert given polynomial into linear factors
21593.

What is the draw back of Basic propornality theorem ?How it is Overcome?

Answer» BPT does not explain lengths of parallel sides in a triangle.To over come this we have concept of Criteria for similarity b/w Triangles
Kya, BPT theorem ka drawback bhi hai.....?
21594.

Maths sare chapter kitne marks ke aate hai

Answer» Ch- 1 (6 marks) 3 question totalCh- 2,3,4,5 (20marks) 8 question totalCh-7 (6 marks) 3 queston total Ch- 8,9 (12 marks) 4 question total Ch- 6,10,11 (15 marks) 5 question totalCh 12,13 (10 marks) 3 question totalCh- 14, 15 (11 marks) 4 question total
21595.

25x^4-20x^2+4=0

Answer» 25x^4 - 20x^2 + 4=025x^4 - 10x^2 - 10x^2 +4 =05x^2(5x^2 - 2) - 2(5x^2 - 2) = 0(5x^2 -2 ) , (5x^2 - 2 ) = 0x^2 = 2/5 , x^2 = 2/5x = √2/5 ,. x= √2/5
21596.

Z^4-13z^2+36=0

Answer» (z -3)(z + 3) (z - 2)(z + 2) = 0z = 3,-3,2 or -2
z4 - 9z2 - 4z2 + 36 = 0z2 (z2 - 9) - 4(z2 - 9) = 0(z2 - 9) (z2 - 4) = 0(z - 9) (z + 9) (z - 4)(z + 4) = 0z = 9,-9, 4 and -4
21597.

Z^4-10z^2+9=0

Answer» z4 - 10z2 + 9 = 0z4 - 9z2 - 1z2 + 9 = 0z2 (z2 - 9) -1(Z2 - 9) = 0(z2 - 9) (z2 - 1) = 0(z -3) (z+3) (z - 1) (z + 1) = 0z = -3, 3, 1, -1
21598.

If x=3 in one root of the quadrate equation xsquare_2kx_6=0 then find the value of k

Answer» Hey... I think this can be ur answer!!Polynomial - x2 - 2kx - 6 =0P (3)=(3)2 - 2(3)k =6=9 - 6k =6=-6k =-3=k =1/2Hope it helps you dear ☺️☺️
The value of k will be 1
21599.

If three coins are tossed together then find the probability of getting two head

Answer» 5/8
Possible outcomes= 8 (H,H,H) (H,T,T) (T,T,T) (T,T,H) (T,H,T) (H,T,H) (H,H,T) (T,H,H)Probability of getting two heads = 4 (H,H,H) (H,H,T) (H,T,H) (T,H,H)Therefore, probability of getting two heads = 4÷8 = 1÷2
1/2
21600.

CosA+SinA=√2CosAthen prove thatCosA-SinA=√2SinA

Answer» From given eqn 1SinA = √2 cosA - cos A SinA = cosA(√2 - 1)SinA /√2-1 = cosARationalising SinA × √2 + 1----------------------- = cosA√2 - 1 × √2 +1√2 sinA + sinA. = CosA------------------------- 2 - 1 √ 2 sinA =. CosA - SinA Hence proved?
By squaring both sides: (cosA+sinA)2=(√2cosA)2By adding (cosA +sinA)2 +( cosA -sinA)2----------->cos2A+sin2A+2cosAsinA+cos2A+sin2A-2cosAsinA---------->cos2A+sin2A+cos2A+sin2A------>1+1=2. Now,(cosA-sinA)2=2-(cosA+sinA)2-------->so, (cosA-sinA)2=2-2cos2A------>(cosA-sinA)2=2(1-cos2A)------>(cosA-sinA)2=2sin2A-------->(cosA-sinA)=√2sinA.... Hence,proved. (Here 2 is the power.)