Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 21701. |
Mujhe formulas yaad nahi hotea kaise yaad keru |
| Answer» First a all right down all the formulas which you think you are unable to learn on a chart paper and then paste it at a place where you always see it then before sleeping or when you wake up you just read and you will be able to easily memorise it | |
| 21702. |
if ∆ABC ~ ∆ QRP, AREA(∆ABC) / AREA(∆QRP)= 9/4, AB = 18cm BC = 15cm, then find the length of PR |
|
Answer» no answer is 16 cm Given: ∆ABC ~ ∆ QRP,AREA(∆ABC) / AREA(∆QRP)= 9/4,AB = 18cmBC = 15cm,length of PR = ?Answer is 10 cm 10? |
|
| 21703. |
What is maths |
|
Answer» Mental attack to healthy student Maths is a magical subject The book which is in my locker Which you study Do you know your name |
|
| 21704. |
x=2+y . find the value of y ? |
|
Answer» Y=x-2 X-2=y U should know the trick , how to do this question |
|
| 21705. |
5,(2k-3),9 is an a.p ,find the value of k |
|
Answer» 5 Indirectly mera answer right he sorry by mistake used 2k - 9 in place of 2k - 3.So, solve same by same method. 5, (2k -9), 9 is an apd = (2k -9) - 5 = 2k-9 - 5 = 2k - 14 .... (i)also d = 9 - (2k-9) = 9 - 2k - 9 = - 2k ...... (ii)From (i) and (ii)2k - 14 = -2k2k + 2k = 144k = 14k = 14/4 = 7/2 K=5 |
|
| 21706. |
1/x+a+b=1/a +1/b +1/x. Solve for x |
| Answer» X= (-a) or (-b) | |
| 21707. |
Tan^2A/1+tan^2A - cot^2A/1+cot^2A=sin^2A-cos^2A-2cos^2A |
| Answer» | |
| 21708. |
If sinA -cosA = 1/2, then find the value of 1/sinA+cosA |
| Answer» | |
| 21709. |
If sum of first n term is 4n²-n then find its ten term |
|
Answer» 75 S1=4(1)^2-1=3 s1=S2= put n=2 now:s2-s1=a2 Similarly a3=s3-s2. We have A find d and find a10 or u can just simply do a10=s10-s9 I know answer |
|
| 21710. |
If sum of first n term of an ap i |
| Answer» | |
| 21711. |
obtain all zeros 2√2-2√2 |
| Answer» Let the | |
| 21712. |
43x+67y=-2467x+43y=24 |
|
Answer» it\'s very urgent please please explain easy steps please send fast I want solution |
|
| 21713. |
What is the difference between expression and equation |
| Answer» P(x) = x^2 + x-1. It\'s Expressionx^2+x-1 =0. It\'s equation | |
| 21714. |
Spliting middle term |
| Answer» Do by D formula | |
| 21715. |
How many of u find triangles chapter easy? |
|
Answer» Therom pr questions kro mene bhi bhot practice ki thi Practice them more Theorem is important |
|
| 21716. |
Show that cot theta . Cos theta +sin theta = cosec theta |
|
Answer» (cos/sin).cos+ sincos^2/ sin+ sin(cos^2+ sin^2)/ sin1/sincosec [email\xa0protected][email\xa0protected]×[email\xa0protected]/[email\xa0protected]@+cos²@/[email\xa0protected](sin²@+cos²@)/[email\xa0protected]/[email\xa0protected]@ |
|
| 21717. |
72+42+4+54+56+55+66+77+88+99+00+123+456+7890 |
| Answer» | |
| 21718. |
What is alternate segment |
| Answer» The alternate segment theorem states that in any circle , the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment | |
| 21719. |
What is the highest . Value in mathematics |
|
Answer» This will not ask in xm Infinity |
|
| 21720. |
Application of algebra |
| Answer» What do u actually want | |
| 21721. |
Solve for xx+3/x-2-(1-x)/x=17/x |
| Answer» | |
| 21722. |
What is bar graph in statics |
| Answer» | |
| 21723. |
If hcf (a,b)=12 and a.b=1800 then find lcm (a,b) |
|
Answer» We know that,Hcf x lcm =product of given 2 numbers=12x lcm=1800 Lcm=1800/12 Lcm=150. Answer. Lcm*hcf=product of 2no.sLcm*12=1800Lcm=1800/12Lcm=150 H.C.F×L.C.M= product of numbers...12×L.C.M=1800...L.C.M=1800/12.....L.C.M=150 |
|
| 21724. |
Find n and Sn of a = 5 , d=3 An=50. |
|
Answer» First apply the formula an=a+(n-1)dan=50, a=5 ,d=3.50=5+(n-1)350-5=(n-1)345=(n-1)345÷3=(n-1)15=(n-1)15+1=n16=nNow,apply Sn=n/2 (2a+(n-1)dSn=16/2 (2×5+(16-1)3Sn=8 (10+45)Sn=8×55Sn=440Therefore, n=16 and Sn=440☺☺ N=60 Sn= 440 an=a+(n_1)d Firstly apply the formula an =a+(n-1) d and then apply the formula to find sum that is sum equal to n/2(2a+(n-1)d) Sorry sorry n= 16 and sn=440 N=12 and sn = 258 n=16, and Sn= 440 |
|
| 21725. |
All solution |
|
Answer» Konsa solution....pura ques type karo Which chapter |
|
| 21726. |
Prove that (secA+tanA-1)(secA-tanA+1)=2/cotA |
|
Answer» Atleast answer to mila mujhe Yup, se...here ..---> (secA+tanA-1)(secA-tanA+1) -----> (secA +tanA-1){secA-(tanA-1)}..................... ----->sec square A - ( tanA - 1)square ................... ------> sec square A-(tan square A+1-2tanA) ........ ----> sec square A-tan square A - 1+ 2 tanA......... ----> 1-1+2tanA........ ----> 2tanA..... ------> 2/ cotA.. HENCE PROVED......☺☺ |
|
| 21727. |
If sin theta + 2cos theta =1Prove that2sin theta - cos theta=2 |
| Answer» Sq. Both [email\xa0protected][email\xa0protected][email\xa0protected]@=1.......... [email\xa0protected]+4([email\xa0protected])[email\xa0protected]@[email\xa0protected][email\xa0protected][email\xa0protected]@[email\xa0protected]@[email\xa0protected]=4....([email\xa0protected]@)^[email\xa0protected]@=2(H.P) | |
| 21728. |
1+tan square theta =1/2 then find theta =? |
| Answer» wrong question | |
| 21729. |
If Angle A and Angle B are acute angles such that cosA=cosB, then show that angle A =angle B? |
| Answer» 《C= 90°,,,,,, cosA=AC/AB,,,,,,,cosB=BC/AB,,,,,,as given cosA=cosB ,,,,,,,,so,,,,AC/AB=BC/AB,,,,so,,,AC=AB,,,,《A=《B | |
| 21730. |
The sum of n terms of two ap\'s are in ratio 3n +8:7n+15. Find ratio of their 12th termd |
| Answer» For the first AP,Let first term=a1common difference=d1using formula:{tex}\\Longrightarrow \\mathrm { S } _ { \\mathrm { n } } = \\frac { \\mathrm { n } } { 2 } [ 2 \\mathrm { a } + ( \\mathrm { n } - 1 ) \\mathrm { d } ]{/tex}{tex}\\Longrightarrow \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 1 } = \\frac { \\mathrm { n } } { 2 } \\left[ 2 \\mathrm { a } _ { 1 } + ( \\mathrm { n } - 1 ) \\mathrm { d } _ { 1 } \\right]{/tex}For 2nd AP.Given,\xa0{tex}\\Rightarrow{/tex}No. of terms=nLet,\xa0{tex}\\Rightarrow{/tex}first term=a2{tex}\\Rightarrow{/tex}common difference=d2Using formula:{tex}\\Longrightarrow \\mathrm { S } _ { \\mathrm { n } } = \\frac { \\mathrm { n } } { 2 } [ 2 \\mathrm { a } + ( \\mathrm { n } - 1 ) \\mathrm { d } ]{/tex}{tex}\\Longrightarrow \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 2 } = \\frac { \\mathrm { n } } { 2 } \\left[ 2 \\mathrm { a } _ { 2 } + ( \\mathrm { n } - 1 ) \\mathrm { d } _ { 2 } \\right]{/tex}According to question :{tex}\\Longrightarrow \\frac { \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 1 } } { \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 2 } } = \\frac { 3 \\mathrm { n } + 8 } { 7 \\mathrm { n } + 15 }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { \\frac { n } { 2 } \\left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \\right] } { \\frac { n } { 2 } \\left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \\right] } = \\frac { 3 n + 8 } { 7 n + 15 }{/tex}Substitute n=23:{tex}\\Longrightarrow \\frac { 2 a _ { 1 } + ( 23 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 23 - 1 ) d _ { 2 } } = \\frac { 3 \\times 23 + 8 } { 7 \\times 23 + 15 }{/tex}{tex}\\Longrightarrow \\frac { 2 \\mathrm { a } _ { 1 } + 22 \\mathrm { d } _ { 1 } } { 2 \\mathrm { a } _ { 2 } + 22 \\mathrm { d } _ { 2 } } = \\frac { 69 + 8 } { 161 + 15 }{/tex}{tex}\\Longrightarrow \\frac { 2 \\left( a _ { 1 } + 11 d _ { 1 } \\right) } { 2 \\left( a _ { 2 } + 11 d _ { 2 } \\right) } = \\frac { 77 } { 176 }{/tex}{tex}\\Longrightarrow \\frac { a _ { 1 } + ( 12 - 1 ) d _ { 1 } } { a _ { 2 } + ( 12 - 1 ) d _ { 2 } } = \\frac { 7 } { 16 }{/tex}{tex}\\Longrightarrow \\frac { \\left( T _ { 12 } \\right) _ { 1 } } { \\left( T _ { 12 } \\right) _ { 2 } } = \\frac { 7 } { 16 }{/tex}{tex}\\therefore{/tex}\xa0(T12)1 : (T12)2=7: 16. | |
| 21731. |
Gain full marks |
|
Answer» If you get full marks in a test and exam you get everything right and gain the maximum number of marks most people in fact got full marks in one question and zero in other if you say that someone gets full marks for something you are praising them for being very clever or showing some other good equality?? Yes ! |
|
| 21732. |
State and prove the Baudhayan theorem. |
|
Answer» Vivek I think its related to isosceles right triangle, plz search in Google. Pythagoras theorem |
|
| 21733. |
Prove that root2 is an irrational number. |
|
Answer» U can read in NCERT its given |
|
| 21734. |
If alpha and beta are the polynomial of |
|
Answer» Write full ques Question poora kr ??? |
|
| 21735. |
Find the curved surface area of a bucket having radious 28cmand 7cm and slant height 45cm? |
|
Answer» 4950 sq cm Sorry the answer is 4950cm^2 45cm3 π(R+r)l = 22/7 x 45 x (28+7) = 22/7 x 45 x 35= 22 x 45 x 5 = 4950 cm^2 |
|
| 21736. |
I want last ten year questions paper of maths please help me |
|
Answer» Plz jii mt bolo...puja 4no.com search here and get 10 year paper Yes, gungun ji is ryt......... U cn get it frm google |
|
| 21737. |
What is the meaning of ^ |
|
Answer» Pie Thnx...... To the power |
|
| 21738. |
Find the values of \'k\' if the ponits A(k+1,2k) , B(3k,2k+3) and C(5k-1,5k) are collinear |
| Answer» Given points will be collinear, if area of the triangle formed by them is zero.Area =\xa0{tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}{tex}\\Rightarrow 0 = \\frac { 1 } { 2 } {/tex}[(k + 1)(2k + 3 - 5k) + 3k(5k - 2k) + (5k - 1) (2k - 2k - 3)]{tex}\\Rightarrow {/tex}\xa00 = (k + 1)(3 - 3k) + 3k(3k) +(5k - 1)(-3){tex}\\Rightarrow {/tex}\xa00 =\xa03k - 3k2\xa0+ 3 - 3k + 9k2\xa0- 15k + 3{tex}\\Rightarrow {/tex}0 = 6k2\xa0- 15k + 6{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 5k + 2{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 4k - k + 2\xa0{tex}\\Rightarrow {/tex}0 = 2k(k - 2) - 1(k - 2){tex}\\Rightarrow {/tex}0 = (2k - 1)(k - 2){tex}\\Rightarrow {/tex}2k - 1 = 0 or k - 2 = 0{tex}\\Rightarrow k = \\frac { 1 } { 2 }{/tex} Or k = 2 | |
| 21739. |
Find the sun of first 8 multiples of 3 |
|
Answer» AP. 3,6,9..........24Sn = n/2 (a+an) = 4(3+24) = 4* 27 = 108 |
|
| 21740. |
Proved by pythagoras theorem (short) |
|
Answer» Given in regular maths book recommended by C. B. S. E Search by self |
|
| 21741. |
The sum of two irrational numbers is an irrational number? |
| Answer» As, root 2 + root 2 = 2 root 2, an irrational bt, root 2 + ( 1-root 2) = 1 , a rational...... | |
| 21742. |
THE HCF OF TWO NUMBERS IS 145 AND THEIR LCM IS 2175.IF ONE NUMBER IS 725, FIND THE OTHER? |
|
Answer» HCF × LCM =Product of numbers145×2175 =725 × 2nd number 2nd = 145×2175/725= 435 ans We use Fundamental Theorem of Arithmetic. As one no.× other no.=HCF×LCM. 725×other no.=145×2175.Other no.=435. a×b=lcm×hcf,,,,, ,,,,725×b= 2175×145,,,,,,b= 435 Other number is 435 |
|
| 21743. |
Difference between an algorithm and a lemma? |
| Answer» A algorithm is a series of steps whereas a lemma is a proven statement | |
| 21744. |
Sin 90-2a |
|
Answer» Bt it should be Sin(90° - 2a).......= Cos 2a Cos 2a |
|
| 21745. |
if 3sinthita+5costhita =5,prove that(5sinthita-3costhita)=+and-3 |
| Answer» =3 sin theta + 5 cos theta= 5Now by squaring both side= 97 squared theta + 25 cos theta + 30 sin theta cos theta= 25= 9 ( 1 - cos²theta) + 25(1-sin² theta)+30 cos theta into sin theta = 25= 9 - 9 cos squared theta + 25 - 25 sin square theta + 30 sin theta into cos theta= 25= 9 + 25 - ( 9 cos square theta + 25 sin square theta minus 30 sin theta into cos theta)=25= -(9 cos square theta + 25 sin square theta minus 30 sin theta into cos theta) = 25-34= (3 cos theta - 5 sin theta )²=9= 3 cos theta- sin theta=+,-3 | |
| 21746. |
prove that:sec50•sin40•+cos40•cosec50•=2 |
| Answer» | |
| 21747. |
Any ask Questions of Trigonometry |
| Answer» | |
| 21748. |
Trigonometry all all formula define? |
| Answer» | |
| 21749. |
Prove that (1+sinA-cosA)²/(1+sinA+cosA)²=1-cosA/1+cosA |
| Answer» =(1+sin²A+cos²A+2sinA-2sinA.cosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinA.cosA+2cosA)= (1+1+2sinA-2sinA.cosA-2cosA)/(1+1+2sinA+2sinA.cosA+2cosA)= (2+2sinA-2sinA.cosA-2cosA)/(2+2sinA+2sinA.cosA+2cosA)= {2(1+sinA)(1-cosA)}/{2(1+sinA)(1+cosA)= 1-cosA/1+cosA | |
| 21750. |
If 3x=secA and 3/x=tanA, then find the value of 9(x²-1/x²) |
| Answer» | |