Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

21701.

Mujhe formulas yaad nahi hotea kaise yaad keru

Answer» First a all right down all the formulas which you think you are unable to learn on a chart paper and then paste it at a place where you always see it then before sleeping or when you wake up you just read and you will be able to easily memorise it
21702.

if ∆ABC ~ ∆ QRP, AREA(∆ABC) / AREA(∆QRP)= 9/4, AB = 18cm BC = 15cm, then find the length of PR

Answer» no answer is 16 cm
Given: ∆ABC ~ ∆ QRP,AREA(∆ABC) / AREA(∆QRP)= 9/4,AB = 18cmBC = 15cm,length of PR = ?Answer is 10 cm
10?
21703.

What is maths

Answer» Mental attack to healthy student
Maths is a magical subject
The book which is in my locker
Which you study
Do you know your name
21704.

x=2+y . find the value of y ?

Answer» Y=x-2
X-2=y
U should know the trick , how to do this question
21705.

5,(2k-3),9 is an a.p ,find the value of k

Answer» 5
Indirectly mera answer right he
sorry by mistake used 2k - 9 in place of 2k - 3.So, solve same by same method.
5, (2k -9), 9 is an apd = (2k -9) - 5 = 2k-9 - 5 = 2k - 14 .... (i)also d = 9 - (2k-9) = 9 - 2k - 9 = - 2k ...... (ii)From (i) and (ii)2k - 14 = -2k2k + 2k = 144k = 14k = 14/4 = 7/2
K=5
21706.

1/x+a+b=1/a +1/b +1/x. Solve for x

Answer» X= (-a) or (-b)
21707.

Tan^2A/1+tan^2A - cot^2A/1+cot^2A=sin^2A-cos^2A-2cos^2A

Answer»
21708.

If sinA -cosA = 1/2, then find the value of 1/sinA+cosA

Answer»
21709.

If sum of first n term is 4n²-n then find its ten term

Answer» 75
S1=4(1)^2-1=3 s1=S2= put n=2 now:s2-s1=a2 Similarly a3=s3-s2. We have A find d and find a10 or u can just simply do a10=s10-s9
I know answer
21710.

If sum of first n term of an ap i

Answer»
21711.

obtain all zeros 2√2-2√2

Answer» Let the
21712.

43x+67y=-2467x+43y=24

Answer» it\'s very urgent please
please explain easy steps
please send fast
I want solution
21713.

What is the difference between expression and equation

Answer» P(x) = x^2 + x-1. It\'s Expressionx^2+x-1 =0. It\'s equation
21714.

Spliting middle term

Answer» Do by D formula
21715.

How many of u find triangles chapter easy?

Answer» Therom pr questions kro mene bhi bhot practice ki thi
Practice them more
Theorem is important
21716.

Show that cot theta . Cos theta +sin theta = cosec theta

Answer» (cos/sin).cos+ sincos^2/ sin+ sin(cos^2+ sin^2)/ sin1/sincosec
[email\xa0protected][email\xa0protected]×[email\xa0protected]/[email\xa0protected]@+cos²@/[email\xa0protected](sin²@+cos²@)/[email\xa0protected]/[email\xa0protected]@
21717.

72+42+4+54+56+55+66+77+88+99+00+123+456+7890

Answer»
21718.

What is alternate segment

Answer» The alternate segment theorem states that in any circle , the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment
21719.

What is the highest . Value in mathematics

Answer» This will not ask in xm
Infinity
21720.

Application of algebra

Answer» What do u actually want
21721.

Solve for xx+3/x-2-(1-x)/x=17/x

Answer»
21722.

What is bar graph in statics

Answer»
21723.

If hcf (a,b)=12 and a.b=1800 then find lcm (a,b)

Answer» We know that,Hcf x lcm =product of given 2 numbers=12x lcm=1800 Lcm=1800/12 Lcm=150. Answer.
Lcm*hcf=product of 2no.sLcm*12=1800Lcm=1800/12Lcm=150
H.C.F×L.C.M= product of numbers...12×L.C.M=1800...L.C.M=1800/12.....L.C.M=150
21724.

Find n and Sn of a = 5 , d=3 An=50.

Answer» First apply the formula an=a+(n-1)dan=50, a=5 ,d=3.50=5+(n-1)350-5=(n-1)345=(n-1)345÷3=(n-1)15=(n-1)15+1=n16=nNow,apply Sn=n/2 (2a+(n-1)dSn=16/2 (2×5+(16-1)3Sn=8 (10+45)Sn=8×55Sn=440Therefore, n=16 and Sn=440☺☺
N=60 Sn= 440
an=a+(n_1)d
Firstly apply the formula an =a+(n-1) d and then apply the formula to find sum that is sum equal to n/2(2a+(n-1)d)
Sorry sorry n= 16 and sn=440
N=12 and sn = 258
n=16, and Sn= 440
21725.

All solution

Answer» Konsa solution....pura ques type karo
Which chapter
21726.

Prove that (secA+tanA-1)(secA-tanA+1)=2/cotA

Answer» Atleast answer to mila mujhe
Yup, se...here ..---> (secA+tanA-1)(secA-tanA+1) -----> (secA +tanA-1){secA-(tanA-1)}..................... ----->sec square A - ( tanA - 1)square ................... ------> sec square A-(tan square A+1-2tanA) ........ ----> sec square A-tan square A - 1+ 2 tanA......... ----> 1-1+2tanA........ ----> 2tanA..... ------> 2/ cotA.. HENCE PROVED......☺☺
21727.

If sin theta + 2cos theta =1Prove that2sin theta - cos theta=2

Answer» Sq. Both [email\xa0protected][email\xa0protected][email\xa0protected]@=1.......... [email\xa0protected]+4([email\xa0protected])[email\xa0protected]@[email\xa0protected][email\xa0protected][email\xa0protected]@[email\xa0protected]@[email\xa0protected]=4....([email\xa0protected]@)^[email\xa0protected]@=2(H.P)
21728.

1+tan square theta =1/2 then find theta =?

Answer» wrong question
21729.

If Angle A and Angle B are acute angles such that cosA=cosB, then show that angle A =angle B?

Answer» 《C= 90°,,,,,, cosA=AC/AB,,,,,,,cosB=BC/AB,,,,,,as given cosA=cosB ,,,,,,,,so,,,,AC/AB=BC/AB,,,,so,,,AC=AB,,,,《A=《B
21730.

The sum of n terms of two ap\'s are in ratio 3n +8:7n+15. Find ratio of their 12th termd

Answer» For the first AP,Let first term=a1common difference=d1using formula:{tex}\\Longrightarrow \\mathrm { S } _ { \\mathrm { n } } = \\frac { \\mathrm { n } } { 2 } [ 2 \\mathrm { a } + ( \\mathrm { n } - 1 ) \\mathrm { d } ]{/tex}{tex}\\Longrightarrow \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 1 } = \\frac { \\mathrm { n } } { 2 } \\left[ 2 \\mathrm { a } _ { 1 } + ( \\mathrm { n } - 1 ) \\mathrm { d } _ { 1 } \\right]{/tex}For 2nd AP.Given,\xa0{tex}\\Rightarrow{/tex}No. of terms=nLet,\xa0{tex}\\Rightarrow{/tex}first term=a2{tex}\\Rightarrow{/tex}common difference=d2Using formula:{tex}\\Longrightarrow \\mathrm { S } _ { \\mathrm { n } } = \\frac { \\mathrm { n } } { 2 } [ 2 \\mathrm { a } + ( \\mathrm { n } - 1 ) \\mathrm { d } ]{/tex}{tex}\\Longrightarrow \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 2 } = \\frac { \\mathrm { n } } { 2 } \\left[ 2 \\mathrm { a } _ { 2 } + ( \\mathrm { n } - 1 ) \\mathrm { d } _ { 2 } \\right]{/tex}According to question :{tex}\\Longrightarrow \\frac { \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 1 } } { \\left( \\mathrm { S } _ { \\mathrm { n } } \\right) _ { 2 } } = \\frac { 3 \\mathrm { n } + 8 } { 7 \\mathrm { n } + 15 }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { \\frac { n } { 2 } \\left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \\right] } { \\frac { n } { 2 } \\left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \\right] } = \\frac { 3 n + 8 } { 7 n + 15 }{/tex}Substitute n=23:{tex}\\Longrightarrow \\frac { 2 a _ { 1 } + ( 23 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 23 - 1 ) d _ { 2 } } = \\frac { 3 \\times 23 + 8 } { 7 \\times 23 + 15 }{/tex}{tex}\\Longrightarrow \\frac { 2 \\mathrm { a } _ { 1 } + 22 \\mathrm { d } _ { 1 } } { 2 \\mathrm { a } _ { 2 } + 22 \\mathrm { d } _ { 2 } } = \\frac { 69 + 8 } { 161 + 15 }{/tex}{tex}\\Longrightarrow \\frac { 2 \\left( a _ { 1 } + 11 d _ { 1 } \\right) } { 2 \\left( a _ { 2 } + 11 d _ { 2 } \\right) } = \\frac { 77 } { 176 }{/tex}{tex}\\Longrightarrow \\frac { a _ { 1 } + ( 12 - 1 ) d _ { 1 } } { a _ { 2 } + ( 12 - 1 ) d _ { 2 } } = \\frac { 7 } { 16 }{/tex}{tex}\\Longrightarrow \\frac { \\left( T _ { 12 } \\right) _ { 1 } } { \\left( T _ { 12 } \\right) _ { 2 } } = \\frac { 7 } { 16 }{/tex}{tex}\\therefore{/tex}\xa0(T12)1 : (T12)2=7: 16.
21731.

Gain full marks

Answer» If you get full marks in a test and exam you get everything right and gain the maximum number of marks most people in fact got full marks in one question and zero in other if you say that someone gets full marks for something you are praising them for being very clever or showing some other good equality??
Yes !
21732.

State and prove the Baudhayan theorem.

Answer» Vivek I think its related to isosceles right triangle, plz search in Google.
Pythagoras theorem
21733.

Prove that root2 is an irrational number.

Answer»
\'\'https://images.app.goo.gl/eaJm55Pj3HSHpkne6\'\'
U can read in NCERT its given
21734.

If alpha and beta are the polynomial of

Answer» Write full ques
Question poora kr
???
21735.

Find the curved surface area of a bucket having radious 28cmand 7cm and slant height 45cm?

Answer» 4950 sq cm
Sorry the answer is 4950cm^2
45cm3
π(R+r)l = 22/7 x 45 x (28+7) = 22/7 x 45 x 35= 22 x 45 x 5 = 4950 cm^2
21736.

I want last ten year questions paper of maths please help me

Answer» Plz jii mt bolo...puja
4no.com search here and get 10 year paper
Yes, gungun ji is ryt.........
U cn get it frm google
21737.

What is the meaning of ^

Answer» Pie
Thnx......
To the power
21738.

Find the values of \'k\' if the ponits A(k+1,2k) , B(3k,2k+3) and C(5k-1,5k) are collinear

Answer» Given points will be collinear, if area of the triangle formed by them is zero.Area =\xa0{tex}\\frac { 1 } { 2 } \\left[ x _ { 1 } \\left( y _ { 2 } - y _ { 3 } \\right) + x _ { 2 } \\left( y _ { 3 } - y _ { 1 } \\right) + x _ { 3 } \\left( y _ { 1 } - y _ { 2 } \\right) \\right]{/tex}{tex}\\Rightarrow 0 = \\frac { 1 } { 2 } {/tex}[(k + 1)(2k + 3 - 5k) + 3k(5k - 2k) + (5k - 1) (2k - 2k - 3)]{tex}\\Rightarrow {/tex}\xa00 = (k + 1)(3 - 3k) + 3k(3k) +(5k - 1)(-3){tex}\\Rightarrow {/tex}\xa00 =\xa03k - 3k2\xa0+ 3 - 3k + 9k2\xa0- 15k + 3{tex}\\Rightarrow {/tex}0 = 6k2\xa0- 15k + 6{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 5k + 2{tex}\\Rightarrow {/tex}0 = 2k2\xa0- 4k - k + 2\xa0{tex}\\Rightarrow {/tex}0 = 2k(k - 2) - 1(k - 2){tex}\\Rightarrow {/tex}0 = (2k - 1)(k - 2){tex}\\Rightarrow {/tex}2k - 1 = 0 or k - 2 = 0{tex}\\Rightarrow k = \\frac { 1 } { 2 }{/tex} Or k = 2
21739.

Find the sun of first 8 multiples of 3

Answer» AP. 3,6,9..........24Sn = n/2 (a+an) = 4(3+24) = 4* 27 = 108
21740.

Proved by pythagoras theorem (short)

Answer» Given in regular maths book recommended by C. B. S. E
Search by self
21741.

The sum of two irrational numbers is an irrational number?

Answer» As, root 2 + root 2 = 2 root 2, an irrational bt, root 2 + ( 1-root 2) = 1 , a rational......
21742.

THE HCF OF TWO NUMBERS IS 145 AND THEIR LCM IS 2175.IF ONE NUMBER IS 725, FIND THE OTHER?

Answer» HCF × LCM =Product of numbers145×2175 =725 × 2nd number 2nd = 145×2175/725= 435 ans
We use Fundamental Theorem of Arithmetic. As one no.× other no.=HCF×LCM. 725×other no.=145×2175.Other no.=435.
a×b=lcm×hcf,,,,, ,,,,725×b= 2175×145,,,,,,b= 435
Other number is 435
21743.

Difference between an algorithm and a lemma?

Answer» A algorithm is a series of steps whereas a lemma is a proven statement
21744.

Sin 90-2a

Answer» Bt it should be Sin(90° - 2a).......= Cos 2a
Cos 2a
21745.

if 3sinthita+5costhita =5,prove that(5sinthita-3costhita)=+and-3

Answer» =3 sin theta + 5 cos theta= 5Now by squaring both side= 97 squared theta + 25 cos theta + 30 sin theta cos theta= 25= 9 ( 1 - cos²theta) + 25(1-sin² theta)+30 cos theta into sin theta = 25= 9 - 9 cos squared theta + 25 - 25 sin square theta + 30 sin theta into cos theta= 25= 9 + 25 - ( 9 cos square theta + 25 sin square theta minus 30 sin theta into cos theta)=25= -(9 cos square theta + 25 sin square theta minus 30 sin theta into cos theta) = 25-34= (3 cos theta - 5 sin theta )²=9= 3 cos theta- sin theta=+,-3
21746.

prove that:sec50•sin40•+cos40•cosec50•=2

Answer»
21747.

Any ask Questions of Trigonometry

Answer»
21748.

Trigonometry all all formula define?

Answer»
21749.

Prove that (1+sinA-cosA)²/(1+sinA+cosA)²=1-cosA/1+cosA

Answer» =(1+sin²A+cos²A+2sinA-2sinA.cosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinA.cosA+2cosA)= (1+1+2sinA-2sinA.cosA-2cosA)/(1+1+2sinA+2sinA.cosA+2cosA)= (2+2sinA-2sinA.cosA-2cosA)/(2+2sinA+2sinA.cosA+2cosA)= {2(1+sinA)(1-cosA)}/{2(1+sinA)(1+cosA)= 1-cosA/1+cosA
21750.

If 3x=secA and 3/x=tanA, then find the value of 9(x²-1/x²)

Answer»