Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

21951.

If one root of 5x2+13x+k=0 is the reciprocal of the other root then find the value of k

Answer» Answer
Answer plz
21952.

If (x-2)(x+3)is hcf of p(x)=(2x-3x+2)(4+7x+a) and g(x)=(2x+4x+3)(6-7x+b) find a and b

Answer»
21953.

(1+cotA+tanA)(sinA-cosA)= sinA×tanA-cotA×cosA

Answer» L.H.S\xa0= (1 + cotA + tanA) (sinA - cosA)= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA{tex}= \\sin A - \\cos A + \\frac{{\\cos A}}{{\\sin A}} \\times \\sin A - \\cot A\\cos A + \\sin A\\;\\tan A - \\frac{{\\sin A}}{{\\cos A}} \\times \\cos A{/tex}= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA= sinA tanA - cotA cosA........(1)Now taking ;{tex}\\quad \\frac{{\\sec A}}{{\\cos e{c^2}A}} - \\frac{{\\cos ecA}}{{{{\\sec }^2}A}}{/tex}{tex} = \\frac{{\\frac{1}{{\\cos A}}}}{{\\frac{1}{{{{\\sin }^2}A}}}} - \\frac{{\\frac{1}{{\\sin A}}}}{{\\frac{1}{{{{\\cos }^2}A}}}}{/tex}{tex} = \\frac{{{{\\sin }^2}A}}{{\\cos A}} - \\frac{{{{\\cos }^2}A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\frac{{\\sin A}}{{\\cos A}} - \\cos A \\times \\frac{{\\cos A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\tan A - \\cos A \\times \\cot A{/tex}.......(2)From (1) & (2),(1 + cotA + tanA) (sinA - cosA) =\xa0{tex}\\frac { \\sec A } { cosec ^ { 2 } A } - \\frac { cosec A } { \\sec ^ { 2 } A }{/tex}\xa0= sinA.tanA - cosA.cotA\xa0Hence, Proved.
21954.

(-2) (-2) (-2)?

Answer» -8)
-8
(-8)
21955.

Nth of ap 3\'6;5799

Answer»
21956.

How many irrational numbers lie between √2 and √3 ? Write any two of them

Answer» Sq rt of 2 = 1.41.....Sq rt of 3 = 1.73.......U can take any 2 nos between these 2 values eg 1.423...., 1.65473........
21957.

Open this identity\' a cube - b cube\' (a3-b3)

Answer» Most Welcome
Thnx once again
(a+b)(a^2-ab-b^2)
If we have a^3+b^3
(a-b)(a^2+ab+b^2)
21958.

5000 red tiles and 2000 white tile find the probability of blue tiles

Answer» 0, this is impossible event
0, zero......
0
0
Is this the complete question?
21959.

CosecA-cotA=q then show thatq2-1\\q2+1+cosA =0

Answer»
21960.

500 red toffeies and 200 blue toffeies find the probability of not red toffies

Answer» Total toffees = red toffees +blue toffees = 500 + 200 =700Not red toffees = blue toffees = 200P(E) =not red toffees /total toffees = 200/700 = 2/7
P(getting not a red toffies)=200/700=2/7
Probability of not red toffies=200/700=2/7
21961.

Sin 130 value

Answer»
21962.

6x+5y=0

Answer»
21963.

20 red candies and 5 blue candies find the probability of red candies

Answer» P(getting red candies)=20/25=4/5
20/25
20/25
4/5
4/5
Probability of red candies=20/25 =4/5
4/5
21964.

Sin 2A = 2 sin A, when A=

Answer» A=0°
A=0°
A=0
I just guessed......
90 degree....
A=0°
21965.

Ch-4 question is ex-4.3 question no-3

Answer» 2》1/x+4-1/x-7=11/30 x-7-x-4/x+4 (x-7)=11/30 -11/x^2-3x-28=11/30 -11 (30)/11 (x^2-3x-28) -30/x^2-3x-28 x^2-3x+2 x^2-x-2x+2 x (x-1)-2 (x-1) (x-2)(x-1)x=2x=1
1》x-1/x=3 x^2-1=3x x^2-3x-1D=b^2-4ac = (-3)^2-4 (1)(-1) =9+4 =13x=-b+root D/2a x=-b+rootD/2a =3+root13/2 =3-root13/2
If it is of. Ncert then ncert solutions is given in this app......
21966.

If sin4x/a+cos4x/b = 1/a+b. Prove that sin8x/a³+cos8x/b³ = (1/a+b)³

Answer» Given : Sin⁴x/a + cos⁴x/b = 1/a+bTo prove :sin⁸x/a³ + cos⁸x/b³ =?Solution:Sin⁴x/a + cos⁴x/b = 1/a+bAs we know that Sin²x +Cos²x=1∴Cos²x=1-sin²xCos⁴x=(Cos²x)²=(1-sin²x)²=1+sin⁴x-2sin²x⇒Sin⁴x/a +[1+sin⁴x-2sin²x]/b =1/a+b⇒Sin⁴x/a+1/b +\xa0sin⁴x/b -2sin²x/b=(1/a+b)⇒Sin⁴x/a+\xa0sin⁴x/b -2sin²x/b=(1/a+b)-1/b⇒Sin⁴x(1/a +1/b)-2sin²xa/ab=[b-a-b]/b(a+b)⇒Sin⁴x(1/a +1/b)-2asin²x/ab=-a/b(a+b)⇒Sin⁴x(a+b)/ab-2asin²x/ab=-a/b(a+b)⇒(a+b)²(Sin²x)² - 2a(a+b)sin²x= - a²⇒(a+b)²(Sin²x)² - 2a(a+b)sin²x + a² =0This equation is similar to a²-2ab+b²=0\xa0⇒(a-b)²[(a+b) Sin²x-a]²=0sin²x=a/a+bCos²x=1-sin²x= 1- a/(a+b)= b/a+b∴sin²x=a/a+b and Cos²x=\xa0b/a+bNow :sin⁸x=a⁴/(a+b)⁴ and Cos⁸x= b⁴/(a+b)⁴sin⁸x/a³= a/(a+b)⁴ and Cos⁸x/b³=b/(a+b)⁴Now\xa0sin⁸x/a³ + Cos⁸x/b³ = a/(a+b)⁴ + b/(a+b)⁴=a+b/(a+b)⁴⇒sin⁸x/a³ + Cos⁸x/b³=1/(a+b)³
21967.

1.73 which angle value of tan

Answer» Yesss, its Tan 60°.....
\'Tan 60\' as tan 60 stands fr √3 and value of it is 1.73
Complete ur question!
21968.

Divide 24 in 3 parts such that they are in AP and their product is 440 ??

Answer» Solution:-Let the required terms of the given AP be a-d, a and a+d *Where the first term is a-d*The common difference = d*Given : The sum of the three parts = 24*∴ (a-d)+(a)+(a+d) = 243a = 24 #a = 8#Given : The product of these three terms = 440∴ (a-d) (a) (a+d) = 440#(8-d) (8) (8+d) = 440#- 8d² + 512 = 440#- 8d² = 440 - 512#- 8d² = - 72#d² = 72/8#d² = 9#d = √9#d= 3#So the three required terms of AP is 8 - 3 = 5 ; 8 and 8 + 3 = 11Three terms are 5, 8, 11
21969.

In an ap if the common different -4,and the seventh term is 4, then find the first term

Answer» Givend=-4 and T7=4a+ 6d=4a+6(-4)=4a=4+24a=28
Given that a7=4a+6d=4 a+6(-4)=4 (d=-4)a-24=4a=24+4a=28
A=12
28
_12
A=28
21970.

If tanA+cosA=p,than Find value of cosecA.

Answer» Question me tan A +cosA=p h yrr
And again plz
I have already answered it earlier
21971.

CosA/2-sinA=1+sinA/cosA

Answer» / means what ? Then the answer comes
21972.

Find all zeroes of the polynomial if two zeros are (2+root3) and (2-root 3)

Answer» Bt, polynomial hai kahan...?????
Where is the polynomial
21973.

Solve b2x/a - a2y/b = ab(a + b) b2x - a2y = 2a2b2

Answer» hbj
21974.

How can be 2+2 will equal to 5.

Answer» Ram
I appreciate you
Mr Yuvraj ,This is useless thing 2+2=5 is impossible,behave like a good student and do not waste your time.May be somebody prove this by using 0\\0=1,which is again wrong and useless.
21975.

If the areas of two similiar triangles are equql, prove that they are congruent

Answer» Q.If the areas of two similar triangles are equal, prove that they are congruent.
Solution:
21976.

Sample papper 12 answer

Answer»
21977.

If cos A = 2/5, find the value of 4 + 4 tan2 A.

Answer» CosA =2/5=b/hP= √h²-b²=√5²-2²=√25-4=√21Now, tan²A=(√21)²/2²=21/4According to question,4+4×21/4=4+21=25So the right answer is 25....Hope it helps you a lot....
25
25
21978.

Tan 20 ta40 tan 8o is equal to tan 60 prove

Answer» Given, tan 20 * tan 40 * tan 80= tan 40 * tan 80 * tan 20= [{sin 40 * sin 80}/{cos 40 * cos 80}] *(sin 20/cos 20)= [{2 * sin 40 * sin 80}/{2 * cos 40 * cos 80}] *(sin 20/cos 20)= [{cos 40 - cos 120}/{cos 120 + cos 40}] *(sin 20/cos 20)= [{cos 40 - cos (90 + 30)}/{cos (90 + 30) + cos 40}] *(sin 20/cos 20)= [{cos 40 + sin30}/{-sin30 + cos 40}] *(sin 20/cos 20)= [{(2 * cos 40 + 1)/2}/{(-1 + cos 40)/2}] *(sin 20/cos 20)= [{2 * cos 40 + 1}/{-1 + cos 40}] *(sin 20/cos 20)= [{2 * cos 40 * sin 20 + sin 20}/{-cos 20 + cos 40 * cos 20}]= (sin 60 - sin 20 + sin 20)/(-cos 20 + cos 60 + cos 20)= sin 60/cos 60= tan 60...
21979.

Tan 20 tan 6o tan 80 is equal tan 60

Answer» LHS = tan 20° tan 40° tan 80°\xa0{tex}=\\frac{\\sin 20^{\\circ} \\sin 40^{\\circ} \\sin 80^{\\circ}}{\\cos 20^{\\circ} \\cos 40^{\\circ} \\cos 80^{\\circ}}{/tex}{tex}=\\frac{\\left(2 \\sin 20^{\\circ} \\sin 40^{\\circ}\\right) \\sin 80^{\\circ}}{\\left(2 \\cos 20^{\\circ} \\cos 40^{\\circ}\\right) \\cos 80^{\\circ}}{/tex}\xa0{tex}=\\frac{\\left(\\cos 20^{\\circ}-\\cos 60^{\\circ}\\right) \\sin 80^{\\circ}}{\\left(\\cos 60^{\\circ}+\\cos 20^{\\circ}\\right) \\cos 80^{\\circ}}{/tex}\xa0[{tex}\\because{/tex}\xa02 sin a sin b = cos (a-b) - cos (a+b), 2 cos a cos b = cos (a+b) + cos (a-b)]{tex}=\\frac{\\sin 80^{\\circ} \\cos 20^{\\circ}-(1 / 2) \\sin 80^{\\circ}}{(1 / 2) \\cos 80^{\\circ}+\\cos 80^{\\circ} \\cos 20^{\\circ}}{/tex}\xa0[\xa0{tex}\\because \\cos\\;60^o=\\frac12{/tex}]{tex}=\\frac{2 \\sin 80^{\\circ} \\cos 20^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+2 \\cos 80^{\\circ} \\cos 20^{\\circ}}{/tex}{tex}=\\frac{\\sin 100^{\\circ}+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+\\cos 100^{\\circ}+\\cos 60^{\\circ}}{/tex}[{tex}\\because{/tex}\xa02 sin a cos b = sin (a+b) + sin (a-b)]{tex}=\\frac{\\sin \\left(180^{\\circ}-80^{\\circ}\\right)+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}+\\cos \\left(180^{\\circ}-80^{\\circ}\\right)+\\cos 60^{\\circ}}{/tex}{tex}=\\frac{\\sin 80^{\\circ}+\\sin 60^{\\circ}-\\sin 80^{\\circ}}{\\cos 80^{\\circ}-\\cos 80^{\\circ}+\\cos 60^{\\circ}}{/tex}\xa0{tex}=\\frac{\\sin 60^{\\circ}}{\\cos 60^{\\circ}}{/tex}\xa0= tan 60° = RHS
21980.

Find the sum of all two digit no. Which when dividd by 4 yield 3 as remainder

Answer» 1254
21981.

(k-12)x+2(k-12)x+2=0

Answer» Anewer
21982.

x/0.125 = x/0.75 + 20

Answer»
21983.

Formula pf Sn

Answer» n/2(2a+(n-1)d)
Another formula for Sn is n/2(a+an).............
Sn= n/2{2a+(n-1)d}
21984.

Plz tell me how i do ch-9 of maths osme diagram ke galti Ho jati hay or fir Sara que galt

Answer» Statement ko point to point and word to word padho aur according to given points steps to step figure banate raho and figure bilkul correct banagi
Thanks
Learn from CBSE guide may it help u i had learn all difficult chapters from this site this is really helpful ??
21985.

What is the maximum value of 1/cosecQ

Answer» 1.because 1/cosec=sin.In trigonometry ratios table the maximum value for sin is 1
21986.

CosA -sinA+ 1÷ cosA +sinA -1=cosecA+ cotA

Answer» By which identity
First divide each term by SinA and then solve it by trignometric identity
Plz solve this problem fastly
21987.

In an AP the sum of first n term is √3n/2+13n/2 find the 25th term

Answer»
21988.

(p-3)x+3y=ppx+py=12

Answer» Consider equations (p - 3)x + 3y = pand px + py = 12For infinitely many solutions,{tex}\\frac{p - 3}{p}{/tex}\xa0=\xa0{tex}\\frac{3}{p}{/tex}\xa0=\xa0{tex}\\frac{p}{12}{/tex}...........(i)Consider,\xa0{tex}\\frac{3}{p}{/tex}\xa0=\xa0{tex}\\frac{p}{12}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0p2 = 36 {tex}\\Rightarrow{/tex}\xa0p =\xa0{tex}\\pm{/tex}6For p = 6, from (i)\xa0{tex}\\frac{3}{6}{/tex}\xa0=\xa0{tex}\\frac{3}{6}{/tex}\xa0=\xa0{tex}\\frac{6}{12}{/tex}, trueFor p = -6, from (i)\xa0{tex}\\frac{-9}{-6}{/tex}\xa0=\xa0{tex}\\frac{3}{-6}{/tex}\xa0=\xa0{tex}\\frac{-6}{12}{/tex}, false.Hence, for p = 6, pair of linear equations has infinitely many solutions.
21989.

Sec theta + tan theta is equals to p find the value of cosec theta

Answer»
21990.

Pls any one tell me how to make a board exam easy on maths what preparation need

Answer» Yes it is true that maths need practise and concept understanding...And one more thing be confident every time...think positive and hope that i can do everything.
Maths need practice and concept understanding.
21991.

How to make trigonometric ratios easily ..

Answer» \tLearn sin and cos formula properly.\tThen Value of tan is value of sin divide by value of cos.\tCot is inverse of tan.\tSec is inverse of cos.\tcosec is inverse of sin.
And the most important thing is practice.....without practice u cant do anything?
Its soo easy u just have to convert everything into sin and cos and then simplify...or take the LCM and solve it....u just hve to think nd apply mind and thats all.....hope it helps yuu?
21992.

If the sum of nth term of two A.P. is in ratio 4x+27:7x+14.Then find the ratio of their 9th term

Answer» 24:19
21993.

How to solve ratio\'s question in ap chapter

Answer» Putting= sign between them
21994.

I need re paper 2018

Answer» Which subject...????
21995.

I need question papers since 2013

Answer» Get it from gooooogle.
You can download fromhttps://www.topperlearning.com/learn/previous-year-question-papers/cbse/class-10/b101c2e8
U can get it from Google
21996.

Cos 45 /sec 30 + cosec 30 please explain me how to do this????

Answer» {tex}\\begin{array}{l}\\frac{\\cos45}{sec30}+\\cos ec30\\\\=\\frac{\\displaystyle\\frac1{\\sqrt2}}{\\displaystyle\\frac2{\\sqrt3}}+2=\\frac1{\\sqrt2}\\times\\frac{\\sqrt3}2+2\\\\=\\frac{\\sqrt3}{2\\sqrt2}+2\\\\=\\frac{\\sqrt3{\\displaystyle+}{\\displaystyle4}{\\displaystyle\\sqrt2}}{2\\sqrt2}=\\frac{1.73+4\\times1.41}{2\\times1.41}=\\frac{1.73+5.64}{2.82}\\\\=\\frac{7.37}{2.82}=2.613\\\\\\end{array}{/tex}
I had puteen thia value but i m not able to solve please explain it
Hope it will help you
Just put the values and then solve, cos 45= 1/root2 , sec 30= 2/root3, and cosec 30=2.
21997.

How to find the missing frequency

Answer»
21998.

How can we proof that 0=100

Answer» I think ?in the question there is 0/0 = 100 not only 0 = 100
21999.

7sin+3cos=4,then prove that sec÷cosec=2÷2/√3

Answer» Question is wrong. Go and check it once again because answer cannot be derived from your given question
22000.

Can I get all india 2017 board paper

Answer» you are fool
Yup it is given in the net ..u can do google