Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 22501. |
Kya quadratic formula ka derivation hamare exam me aa sakta h??? |
|
Answer» Kyona Never... No |
|
| 22502. |
Divide 27 into two parts such that sum of their reciprocal is 3/20 |
| Answer» Let one no. be X and another no. =27 - X A.t.q. 1/X+1/27-X= 3/20 iss equation ko solve kar do | |
| 22503. |
If one root of the eqation 5x2+13x+k is the resiprocal of other root . Find value of k |
| Answer» Let zeroes = a and 1/aProduct of zeroes =c/aa×1/a= k/5k/5=1So, k= 5 | |
| 22504. |
Is zero positive integer or negative integer?reply fast please |
|
Answer» Then which type of integer is zero Zero is nor negative nor positive integer.. Its neither positive nor negative |
|
| 22505. |
Prove that (cosec theta-sin theta).(sec theta-cos theta).(tan theta+cot theta)=1 |
| Answer» Answer please | |
| 22506. |
1-cosa/1+cosa |
|
Answer» Not complete question. Plz type question properly |
|
| 22507. |
Underoot x + y = 7 and x + underoot y = 11 . Find the value of x and y . |
| Answer» | |
| 22508. |
Two different disc are tosed together find probality of getting a double head |
|
Answer» Total number of outcomes= 36Favourable outcomes are : (1,1),(2,2) ,(3,3),(4,4),(5,5),(6,6)Number of outcomes favourable = 6{tex}Probability\\;=\\;\\frac{Number\\;of\\;favorable\\;outcome}{Total\\;number\\;of\\;outcome}\\;{/tex}Required probability = P(getting the doublet) = 6/36 = ⅙Hence, the probability of getting the doublet = ⅙.\xa0 1/8 |
|
| 22509. |
If sec a + cos a =2 then find the value of sec^9 a + cos^9 a |
| Answer» | |
| 22510. |
What\'s the difference between rational and irrational numbers? |
|||
| Answer» | BASIS FOR COMPARISON | RATIONAL NUMBERS | IRRATIONAL NUMBERS | \t\t\tMeaningRational numbers refers to a number that can be expressed in a ratio of two integers.An irrational number is one which can\'t be written as a ratio of two integers.FractionExpressed in fraction, where denominator ≠ 0.Cannot be expressed in fraction.IncludesPerfect squaresSurdsDecimal expansionFinite or recurring decimalsNon-finite or non-recurring decimals.\t|
|---|---|---|---|---|
| 22511. |
I want pre board mathematics exam paper of code RSPL .......PLZZZZ RPLY IF U HVE ANY INFO ABoUT THT |
|
Answer» Then check it............... No Did u checked cbse website? I have not But that was not of code RSPL Check out this app go to mathematics section and then go to the sample paper section u will find the sample paper................................? |
|
| 22512. |
+ 3 y = 211 and 2 x minus 4 y = 224 so find the value of m f y is equal to MX + 3 |
| Answer» I think this question is wrong??write it again ..... | |
| 22513. |
Find the quadratic polynomial whose zeros are √3+√5 and √5-√3. |
| Answer» | |
| 22514. |
Show that 5 is a irrational number |
|
Answer» Check NCERT Let 5 is rational number Sumer 5 ni √5 |
|
| 22515. |
Middle term formula of AP |
|
Answer» If n=even then middle term =n/2&n/2+1 and if n=odd then middle term=n+1/2 a1 -a2 |
|
| 22516. |
Middle term formula |
| Answer» | |
| 22517. |
Tan x = 3 cot x , then x = ? |
|
Answer» 60 degree 60 |
|
| 22518. |
Three plus three |
|
Answer» 6 (jai prath) Six 8 Six |
|
| 22519. |
What is the formula of trigonometry |
| Answer» | |
| 22520. |
A bix contains 12 balls |
| Answer» Plz complete the question... | |
| 22521. |
Solved question paper of cbse |
|
Answer» I m a girl Www.cbse.nic.in Download ot from cbse sight ! Any link...i cant buy a book now...can u give me any link Buy a book .....may be of shivdas and sons |
|
| 22522. |
What is the distance between the point A(sinQ-cosQ,0)and B(0,sinQ+cosQ)? |
| Answer» | |
| 22523. |
Which term of AP:121,117,113,........is first negative term? |
|
Answer» Given,a=121 d=117-121 d=-4 An=0 An=a+(n-1)d 0=121+(n-1)-4 (n-1)-4=-121 (n-1)= -121/-4 n= -121/-4+1 n=121+4/4 n= 125/4 n=31.25 n=32So,the first negative term is 32th term Verify, a32=121+31×-4 a32=121-124 a32=-3And the first negative term is -3 A-125 (let, to get into negative, we need increase 1 term from April) D-117-121= -4An |
|
| 22524. |
Lenth kya hoti hai |
| Answer» Length perpendicular or base ki samne wale line length hoti h | |
| 22525. |
If 25 ki power z - 1 equal to 5 ki power 2x-1 minus hundred, then what is the value of x |
| Answer» | |
| 22526. |
Prove midpoint theoram |
|
Answer» Through converse of basic propotionality theorom as mid points of both side divide both side in same ratio 9th me thi book uthao nineth ki |
|
| 22527. |
Define statistics. |
| Answer» Kya define kare batao to ... | |
| 22528. |
Define triangles. |
| Answer» Are kya kare define | |
| 22529. |
,Find the area of triangle formed by the lines y=x,x=6and y=0 |
| Answer» Is this question is right, richa? | |
| 22530. |
If x2-1 is a factor of px4+qx3+rx2+sx+t,then show p+r+t=q+s=0 |
| Answer» | |
| 22531. |
Is there any natural no. n for which 4^n ends with digit 0 ? Give reason |
| Answer» 4^n can not be end with igit zero Because 4^n =2^n*2^n if it end with digit zero then its factor be 2^n*5^n. | |
| 22532. |
Write the value of tan^2 theta- 1÷cos^2 theta |
| Answer» | |
| 22533. |
cosec theta - sin theta=m^3 sec theta-cos theta =n^3 then prove that m^4n^2+ m^2n^4 = 1 |
| Answer» | |
| 22534. |
Formula for median |
| Answer» L+H(N/2-cf/f) | |
| 22535. |
sec theta + tan theta = p, cosec theta=? |
| Answer» | |
| 22536. |
2\\5a- b =7/5 a -2/3b =8/3 solve a and b |
| Answer» | |
| 22537. |
What is the nature of roots of quadratic equation x^-2x+4=0 |
| Answer» D = b square - 4ac= (-2) square - 4×1×4= 4-16=-12 so no real roots are possible here as D is less than 0 | |
| 22538. |
Solve the equation -4+(-1)+2+.......+x=437 |
| Answer» (-4) + (-1) + 2 + 5 + ---- + x = 437.Now,-1 - (-4) = -1 + 4 = 32 - (-1) = 2 +\xa01 = 35 - 2 = 3Thus, this forms an A.P. with a = -4, d = 3,l = xLet their be n terms in this A.P.Then,Sn\xa0=\xa0{tex}\\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] {/tex}{tex}\\Rightarrow 437 = \\frac { n } { 2 } [ 2 \\times ( - 4 ) + ( n - 1 ) \\times 3 ]{/tex}{tex}\\Rightarrow{/tex}\xa0874 = n[-8 + 3n - 3]{tex}\\Rightarrow{/tex}874 = n[3n - 11]{tex}\\Rightarrow{/tex}874 = 3n2\xa0- 11n{tex}\\Rightarrow{/tex}3n2\xa0- 11n - 874 = 0{tex}\\Rightarrow{/tex}3n2\xa0- 57n + 46n - 874 = 0{tex}\\Rightarrow{/tex}3n(n - 19) + 46(n - 19) = 0{tex}\\Rightarrow{/tex}3n + 46 = 0 or n = 19{tex}\\Rightarrow n = - \\frac { 46 } { 3 }{/tex}\xa0or n\xa0= 19Numbers of terms cannot be negative or fraction.{tex}\\Rightarrow{/tex}\xa0n = 19Now, Sn\xa0=\xa0{tex}\\frac { n } { 2 } [ a + l ]{/tex}{tex}\\Rightarrow 437 = \\frac { 19 } { 2 } [ - 4 + x ]{/tex}{tex}\\Rightarrow - 4 + x = \\frac { 437 \\times 2 } { 19 }{/tex}{tex}\\Rightarrow - 4 + x = 46{/tex}{tex}\\Rightarrow x = 50{/tex} | |
| 22539. |
Difference between the tangent and secant |
| Answer» Secants And TangentsA secant is a line that intersects the circle in two different points and a tangent is a line that intersects the circle in exactly one point, called the point of tangency. Secant and tangent theorems can be used to find congruency, similarity, and special length relationships between the two. One important theorem about secants and tangents states that the measure of an angle formed by two secants, a secant and a tangent, or two tangents intersecting in the interior of a circle is equal to one-half the difference of the measures of the intercepted arcs; that is,\xa0. | |
| 22540. |
Defin Ui in statistics ?? |
| Answer» (Xi-a)÷h | |
| 22541. |
For what value of k will k+9,2k-1 and 2k+7 are the consecutive terms of an A.P? |
|
Answer» My answer also k=18 Samjhe Agar ye consecutive terms of AP hain so( 2k-1)-(k+9)=(2k+7)-(2k-1) inke common difference equal honge Please explain it K=18 |
|
| 22542. |
How to remember solutions of chapter Triangle for a long time?? |
|
Answer» Practice karo , and theorem and construction yaad kar lo...Everything will be easy ... Solutions yaad mat kro , basic strong kro solutions ho jayege☺? Do more practice You want need hard work and learn it stongly Wo practice Karne se hota hai jitni aachi practice utna aacha Aapke liye??? Maths me learn nahi karna hota hai ! Understand then it will be beneficial |
|
| 22543. |
Best time to do maths |
|
Answer» Jab ap shant ho or maths karne ka mood ho, depends on yu but prashant ji ka time acha hai Early morning or late night when there is complete silence From 6 am to 9 am ??? from my point of view ??? |
|
| 22544. |
Ap important formula |
|
Answer» Sn= n/2( a+ l) where l= last term Sn= n/2 ( 2a + ( n-1)×d) An = a + ( n- 1)×d. |
|
| 22545. |
What is euclid theorm |
|
Answer» a=bq+r a= bq + r |
|
| 22546. |
The sum of first n of an ap is given by SN is equal to 2nsquare + 3 and find the 16 term of AP |
|
Answer» There is a mistake in a question.I think question is like thisQuestion:The sum of first n terms of an AP is given by Sn = 2n² + 3n . Find the sixteenth term ofthe AP.Solution:Let an be the nth term & Sn be the sum of first n terms.Given:Sn = 2n²+3nan = S(n) - S(n-1)=2n²+3n -[ 2(n-1)²+3(n-1)]= 2n²+3n -[2(n²+1-2n)+3n -3]= 2n²+3n -[2n²+2-4n + 3n -3]= 2n²+3n -2n²+4n-3n -2+3= 2n²+2n²+3n -3n +4n -2+3= 4n +1an = 4n+1a16= 4×16 +1= 64+1= 65Hence, the 16th term of an AP is 65 -----> a16 = 20........ |
|
| 22547. |
Are mere question ka solution to do pahle |
|
Answer» Mil gaya kya morning me 6:35 par upload kia h Please write the full question Vol.of cone wala Bhai tera question Kya h Question kya hai Kya Q tha |
|
| 22548. |
X^2-20x+112 =0 find x |
|
Answer» D is negative so no real roots You should find D first .D=b^2-4ac =(-20)^2-4 (112) =400-448 =(-48)If d<0 there are no real roots. Are yar quadratic formula put karlo answer mil jayega...... But how X= 20+ root (-48)/2 and 20 - root(-48)/2 |
|
| 22549. |
When diameter of cicle increasing of 40% then how much percentages of area incease? |
|
Answer» 96% 96℅ Area increase by 20 percent because diameter-2r |
|
| 22550. |
Find volume of double cones formed when a triangle of side 4m and 3m is revolved by hypotenuse . |
| Answer» AB = 3 m, AC = 4 mIn\xa0{tex}\\triangle{/tex}BAC, by pythagoras theoremBC2 = AB2 + AC2\xa0{tex}\\Rightarrow{/tex}BC2 = 32 + 42\xa0{tex}\\Rightarrow{/tex}BC2 = 25\xa0{tex}\\Rightarrow{/tex}BC =\xa0{tex}\\sqrt {25} {/tex}\xa0= 5 mIn\xa0{tex}\\triangle{/tex}AOB and\xa0{tex}\\triangle{/tex}CAB{tex}\\angle{/tex}ABO =\xa0{tex}\\angle{/tex}ABC [common]{tex}\\angle{/tex}AOB =\xa0{tex}\\angle{/tex}BAC [each 90o]\xa0Then,\xa0{tex}\\triangle{/tex}AOB -\xa0{tex}\\triangle{/tex}CAB [by AA similarity]{tex}\\therefore{/tex}\xa0{tex}\\frac { A O } { C A } = \\frac { O B } { A B } = \\frac { A B } { C B }{/tex}\xa0[c.p.s.t]{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { A O } { 4 } = \\frac { O B } { 3 } = \\frac { 3 } { 5 }{/tex}Then, AO =\xa0{tex}\\frac{{4 \\times 3}}{5}{/tex}\xa0and OB =\xa0{tex}\\frac{{3 \\times 3}}{5}{/tex}{tex}\\Rightarrow{/tex}\xa0AO =\xa0{tex}\\frac{12}{5}{/tex}\xa0m and OB =\xa0{tex}\\frac{9}{5}{/tex}\xa0m{tex}\\therefore{/tex}OC = 5 -\xa0{tex}\\frac{9}{5}{/tex}\xa0=\xa0{tex}\\frac{16}{5}{/tex}m{tex}\\therefore{/tex}\xa0Volume of double cone thus generated = volume of first cone + volume of second cone{tex}= \\frac { 1 } { 3 } \\pi ( A O ) ^ { 2 } \\times B O + \\frac { 1 } { 3 } \\pi ( A O ) ^ { 2 } \\times O C{/tex}{tex}= \\frac { 1 } { 3 } \\times \\frac { 22 } { 7 } \\times \\left( \\frac { 12 } { 5 } \\right) ^ { 2 } \\times \\frac { 9 } { 5 } + \\frac { 1 } { 3 } \\times \\frac { 22 } { 7 } \\times \\left( \\frac { 12 } { 5 } \\right) ^ { 2 } \\times \\frac { 16 } { 5 }{/tex}{tex}= \\frac { 1 } { 3 } \\times \\frac { 22 } { 7 } \\times \\frac { 12 } { 5 } \\times \\frac { 12 } { 5 } \\left[ \\frac { 9 } { 5 } + \\frac { 16 } { 5 } \\right]{/tex}{tex}= \\frac { 1 } { 3 } \\times \\frac { 22 } { 7 } \\times \\frac { 12 } { 5 } \\times \\frac { 12 } { 5 } \\times 5{/tex}={tex}\\frac{1056}{35}{/tex}\xa0=\xa0{tex}30 \\frac { 6 } { 35 } \\mathrm { m } ^ { 3 }{/tex}. | |