Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23251.

If o

Answer»
23252.

Given an = 4, d = 2, sn = -14 find n and a

Answer» a=-8 n=7 an= a+(n-1)d4=a+2n-24+2=a+2n6=a+2n6-2n=aNow, Sn= n/2(a+an)-14=n/2(6-2n+4)-14=n/2(10-2n)-28=10n-2n²2n²-10n-28=02(n²-10n-14)=0Then solve urself
a=-8,10
23253.

A thief after committing a theft

Answer»
23254.

Are negative number even?

Answer» Yaa
Yes
23255.

Find The 35th term of the AP 6,9,12,15

Answer» 108
108
23256.

Exam

Answer»
23257.

HCF and LCM of 288,360 by prime factorisation method

Answer» Given numbers are 288, 360288 = 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 3 {tex}\\times{/tex} 3 = 25{tex}\\times{/tex} 32360 = 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 2 {tex}\\times{/tex} 3 {tex}\\times{/tex} 3 {tex}\\times{/tex} 5 = 23{tex}\\times{/tex}32{tex}\\times{/tex}5The HCF = the product of their common prime factor with least exponents.{tex}\\therefore{/tex} HCF = 23{tex}\\times{/tex}32 = 48.The LCM is product of all prime factors with their highest exponents.{tex}\\therefore{/tex} LCM of 288, 360 = 25{tex}\\times{/tex}32\xa0{tex}\\times{/tex}5 = 1440
23258.

how many 3digit numbers are divisible by 7

Answer» 128..
Find firstly smallest and greatest three digit number which is divisible by 7You will find 105 equal to first term and 994 a last term and d equal to 7 use (a+(n-1)d) find n it is your Answer
994
23259.

Use euclid division lemma to find HCF of 4052 & 12576

Answer» Yeah shiavaIts crrct..??
After solving your question. I got that 4 is answer.Is it right.?
4
23260.

can u plzz provide the chapter wise weightage fir maths...blue print of board exams 2017 18

Answer» Google it…
23261.

Is NCERT and NCERT exampler enough to score 70 marks out of 80 in boards

Answer»
23262.

Hello keshav

Answer»
23263.

8x

Answer»
23264.

Find the value of tan 60 geometrically

Answer» Let\xa0{tex}\\triangle{/tex}ABC\xa0is an equilateral A with each side = 2a units. Draw\xa0{tex}\\mathrm { AD } \\perp \\mathrm { BC }{/tex}{tex}\\therefore{/tex}\xa0D is mid-point of BC{tex}\\Rightarrow{/tex}\xa0BD = aIn right\xa0{tex}\\triangle{/tex}ADBAB2 = BD2 + AD2{tex}\\Rightarrow{/tex}\xa0(2a)2 = a2 + AD2{tex}\\Rightarrow{/tex}\xa04a2 - a2 = AD2{tex}\\Rightarrow{/tex}\xa0AD =\xa0{tex}\\sqrt { 3 a ^ { 2 } } = \\sqrt { 3 } a{/tex}Now in right\xa0{tex}\\triangle{/tex}ADBtan B\xa0{tex}= \\frac { \\mathrm { AD } } { \\mathrm { BD } }{/tex}{tex}\\Rightarrow{/tex}\xa0tan\xa0{tex}60 ^ { \\circ } = \\frac { \\sqrt { 3 } a } { a }{/tex}\xa0{tex}\\left( \\because \\angle B = 60 ^ { \\circ } \\right){/tex}{tex}\\Rightarrow{/tex}\xa0tan\xa0{tex}60 ^ { \\circ } = \\sqrt { 3 }{/tex}\xa0
23265.

Sun 60 cos 30 +sin 30 cod 60

Answer» We\xa0have{tex}\\sin 60^\\circ\\cos 30^\\circ + \\cos 60^\\circ \\sin 30^\\circ {/tex}{tex} = \\frac{{\\sqrt 3 }}{2} \\times \\frac{{\\sqrt 3 }}{2} + \\frac{1}{2} \\times \\frac{1}{2}{/tex}{tex} = \\frac{3}{4} + \\frac{1}{4}{/tex}{tex} = \\frac{{3 + 1}}{4}{/tex}{tex} = \\frac{4}{4}{/tex} =1
23266.

Solve for x and y or find value of x and y√x + y = 21x + √y = 29

Answer»
23267.

28- 479+67

Answer» --384
518
23268.

sin???

Answer» Punishment
23269.

Tsa of con

Answer» 22/7×r×l
23270.

Please give me tips that how to score 80% marks in boards class 10 please give me

Answer» Thnx but I am not understanding how to study English grammer portion please I am getting confused
Focus on ncert only....it gives u more thn 85 gurenteed
23271.

Find the sum of first 10 natural numbers.

Answer» Sum of frst n natural no.=(nsq+n)/2 10 natural no.=(100+10 )/2 =55
10(10+1)/2=10*11/2=110/2=55
You can use the formula =n(n+1)/2
23272.

Aditi kise ladka se baat krti h whatspp toh mujhe batao because aditi is my gf

Answer»
23273.

Hii alia khan can we talk on whatspp

Answer»
23274.

If sin a + sin²a+ sin³a=3 ,then find the value of cos⁴a - cos²a+cos^6 a.

Answer»
23275.

Prove angle of circle =l/t

Answer»
23276.

15+2

Answer» 17
23277.

A2+b2

Answer»
23278.

Hello...???

Answer»
23279.

In triangle ABC, AD is the bisector of angle A . AB=6cm BD=5cm,CD=4cm.find AC.

Answer»
23280.

Meaning of scale factor

Answer» In two or more similar triangles the equal ratio of corresponding sides is called scale factor or representative fraction
23281.

Maths ki practical banani hai kya 10 class ki

Answer» Thx
Of course
23282.

For an event A , what is P(A)+P(not a) equivalent to?

Answer» It\'s equivalent to 1..
1
23283.

An easy way to find cube root

Answer» L.C.M
Multiplication
23284.

5 is an irrational number

Answer» Let\xa0{tex}\\sqrt 5{/tex}\xa0is a rational number.{tex}\\sqrt { 5 } = \\frac { a } { b }{/tex}(a, b are co-primes and b{tex}\\neq{/tex}0)or,\xa0{tex}a = b \\sqrt { 5 }{/tex}On squaring both the sides, we get\xa0a2=5b2 ---------------------------------(1)Hence 5 is a factor of a2so 5 is a factor of aLet a = 5c, (c is some integer){tex}\\therefore{/tex}\xa0a2\xa0= 25c2\xa0From equation(1) putting the value of a2or, 5b2\xa0= 25c2or b2=5c2so 5 is a\xa0factor of b2or 5 is a factor of bHence 5 is a common factor of a and bBut this contradicts the fact that a and b are co-primes.This is because we assumed that\xa0{tex}\\sqrt 5{/tex}\xa0is rational{tex}\\therefore{/tex}\xa0{tex}\\sqrt 5{/tex}\xa0is irrational.
23285.

Solve for x 1/2a+b+2x=1/2a+1/b+1/2x

Answer» {tex}\\frac{1}{2a + b + 2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0+\xa0{tex}\\frac{1}{2x}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1}{2a + b + 2x}{/tex}\xa0-\xa0{tex}\\frac{1}{2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0{tex}\\Rightarrow{/tex}{tex}\\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2a \\times b}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2ab}{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex}\xa0=\xa0{tex}\\frac{1}{2ab}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax = -2ab{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}2x(2x + b) + 2a(2x + b) = 0{/tex}{tex}\\Rightarrow{/tex}\xa0(2x + b)(2x + 2a) = 0{tex}\\Rightarrow{/tex}\xa0x = -{tex}\\frac{b}{2}{/tex} or x = -a
23286.

Solve for x. 1/a+1/b+1/x=1/a+b+x

Answer» 1/a+b+x - 1/x =1/a +1/b x-a-b-x /ax+bx+x2=b+a/ab-1/ax+bx+x2=1/abax+bx+x2=-ab x2+ax+bx+ab=0x(x+a)+b(x+a)=0(x+a)(x+b)=0x=-a x=-b
23287.

Byee guys I am leave this app

Answer»
23288.

The roots of the equation x2 +x -p(p+1 ) wherw p is constant

Answer» {tex}x^2 + x - p(p+1) = 0{/tex}{tex}x^2 + (p+1)x - px - p(p+1) = 0{/tex}{tex}x(x+ p + 1) -p(x + p + 1) = 0{/tex}(x + p + 1)(x - p) = 0\xa0x = - p - 1, p
23289.

What is section used in mathematics

Answer» Used to find the ratio
23290.

From which book board exm will come only ncert please tell meYar

Answer» Not fixed ...but concept will be from ncert !!
23291.

Who are mathematecian

Answer»
23292.

Area of sector of radius 24cm and angle 90

Answer»
23293.

What\'s wrong with me Rushikesh

Answer»
23294.

How to learn trignometic ratio

Answer» Learn for sin of all the Angles in sequenceFor cos write opposite line of sinFor tan divide the value of sin and cosFor cosec write reciprocal of sinFor sec write reciprocal of cosFor cot write reciprocal of tan Reciprocal of 0 is not definedSmjh ni aaya to fir puch lena
Or memory power
By trick
23295.

Find the eleventh term from the last term of ap:27,23,19,.......-65

Answer»
23296.

222.54!

Answer»
23297.

What is chord of circlle explain with provitation

Answer» The two point at acircle make a line this is called chord diameter is considered to be greatest chord
The line which is other than the diameter, touches the circle at 2 points.
23298.

RIMSHA I know u r here abhi aapne reply diya tha

Answer»
23299.

RIMSHA plzz come

Answer»
23300.

What is 0??

Answer» 0 (zero; /ˈzɪəroʊ/) is both a number[1] and the numerical digit used to represent that number in numerals. The number 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and many other algebraic structures. As a digit, 0 is used as a placeholder in place value systems. Names for the number 0 in English include zero, nought (UK), naught (US) (/nɔːt/), nil, or—in contexts where at least one adjacent digit distinguishes it from the letter "O"—oh or o (/oʊ/). Informal or slang terms for zero include zilch and zip.[2] Ought and aught (/ɔːt/),[3] as well as cipher,[4] have also been used historically.[5]
Blood group