Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23551.

Class 10 maths all formua

Answer» It\'s very hard task .. sry .. ?? see any mathematics book ..
23552.

Class 10 maths all chapter formule

Answer» Get formulae in notes :\xa0https://mycbseguide.com/cbse-revision-notes.html
23553.

Show that n²-3 is divisible by 8 If n is odd +ve integer

Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8.
23554.

Class10.maths all chapter formule

Answer» Himanshu is right
Very hard task ..??sry.. see any maths book ...
23555.

2x+3=4

Answer» 2x=4-3X=1/2
X=1/2
23556.

Prove that /3 is irrational number

Answer» Let us assume that 3 is rational.That is, we can find integers a and b (≠0) such that\xa0a and b are co-prime{tex}\\style{font-family:Arial}{\\begin{array}{l}\\sqrt3=\\frac ab\\\\b\\sqrt3=a\\\\on\\;squaring\\;both\\;sides\\;we\\;get\\\\3b^2=a^2\\end{array}}{/tex}Therefore, a2 is divisible by 3,\xa0it follows that a is also divisible by 3.So, we can write a = 3c for some integer c.Substituting for a, we get 3b2 = 9c2, that is, b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 3c2This means that b2 is divisible by 3, and so b is also divisible by 3\xa0Therefore, a and b have at least 3 as a common factor.But this contradicts the fact that a and b are co-prime.This contradiction has arisen because of our incorrect assumption that 3 is rational.So, we conclude that 3 is irrational.
23557.

500+646556+494767-94656565656

Answer» -94655423833
23558.

An equilateral triangle of side 6 has been inscribed n a circle find area of shaded region

Answer»
23559.

Tell which term forms an AP-1 -3 -5 or 4 10 16 22

Answer» Only there is one possible answer
23560.

If 2x=sec A and 2/x find the value of 2(xsq -1/xsq

Answer»
23561.

One point is called tangent Two point is called secantThree point is called ?

Answer» A line cannot intersect a circle at three points.
23562.

Completing the square formula2x(square)-7x+3=0

Answer» We have 2x2 - 7x + 3 = 0{tex}\\implies2( x^2 - {7 \\over 2}x + {3\\over 2}) = 0{/tex}{tex}\\implies\u200b\u200b x^2 - {7 \\over 2}x + {49 \\over 16} = {-3 \\over 2} +{ 49 \\over 16}{/tex} (Adding 49/16 to both sides){tex}\\implies x^2 -2 \\times x \\times {7 \\over 4} + ({7 \\over 4})^2 = {-24 +49 \\over 16}{/tex}{tex}\\implies (x-{7\\over4})^2 = {25 \\over 16}{/tex}{tex}\\implies x-{7\\over 4}= \\pm \\sqrt({25 \\over 16}){/tex}{tex}\\implies x={7\\over 4} \\pm {5 \\over 4}{/tex}{tex}\\implies x={7\\over 4} + {5 \\over 4}\\, and \\,x={7\\over 4} - {5 \\over 4}{/tex}{tex}\\implies x=3\\, and \\,{1\\over 2}{/tex}{tex}\\therefore{/tex}the roots of the given equation are {tex}3{/tex} and {tex}1\\over 2{/tex}.
23563.

(tanA÷!-cotA ) +(cotA÷1-tanA) =1+secA×cosecA

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
23564.

Using euclids division Leema.find the H.C.F. of 96,144

Answer» 144 = 96 × 1 + 4896 = 48 × 2 + 0 • • • HCF OF 96 AND 144 IS 48
23565.

On which date class 10 board exam will start

Answer»
23566.

If tan theta=cot(60+ theta) then find the value of theta

Answer» Tan theta =cot (60+theta) ? Cot (90-theta) =cot (60+theta) ? 90-theta = 60 + theta ?90-60=2 theta ? 30 = 2 theta ? theta = 15
What is correct answer
650
15
30
23567.

3 3

Answer»
23568.

Formula of ring

Answer» V\xa0= (π²/4)•(a+b)•(b-a)²where:\tV is the\xa0volume of the torus\ta is the inner diameter\tb is the outer diameter
23569.

If the perimeter of a sector of a circle of radius 5.6 cm is 17.2 cm, find the area of the sector

Answer» Let OAB be the given sectorLet arc AB =\xa0{tex}l{/tex}Perimeter of sector OAB = 27.2m{tex} \\Rightarrow {/tex}\xa0OA + OB + ARC AB = 27.2{tex} \\Rightarrow {/tex}\xa0{tex}l{/tex} = 27.2 - (5.7 + 5.7) = 15.8MNow, length of arc\xa0{tex} = \\frac{\\theta }{{360}} \\times 2\\pi r{/tex}{tex}\\frac{{15.8}}{{2\\pi r}} = \\frac{\\theta }{{360}}{/tex}Area of sector AOB\xa0{tex} = \\frac{\\theta }{{360}} \\times \\pi {r^2}{/tex}{tex} = \\frac{{5.8}}{{2\\pi r}} \\times \\pi {r^2}{/tex}= 7.9r{tex} = 7.9 \\times 5.7{/tex}= 45.03m2
23570.

Find value of K for which the equation kx^2+2x+1=0 has real and distinct roots.

Answer» We have, {tex}kx^2+2x+1=0{/tex}here, a=k, b=2, c=1{tex}\\therefore D=b^2-4c=(2)^2-4(k)(1)=4-4k{/tex}The given equation will have real and distinct roots,{tex}D>0\\implies4-4k>0\\implies k<1{/tex}
23571.

Fundamental theorm

Answer»
23572.

2xsquare +kx+3=0 find the value of K

Answer» Incomplete question
Question is incomplete
23573.

Prove that root2 + root5 is irrational number

Answer»
23574.

Prove that CosA/(1-sinA)+cos/(1+sinA)=2secA

Answer»
23575.

Find the number of two digit numbers divisible by 3

Answer» The two -digit numbers divisible by 3 start from 12,15,18,21,...,99Here,\xa0{tex}a=12{/tex}{tex}d=3{/tex}{tex}a_n=a+(n-1)d{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}99=12+(n-1)(3){/tex}{tex}\\Rightarrow{/tex}{tex}\xa099=12+3n-3{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}90=3n{/tex}{tex}\\Rightarrow{/tex}\xa0n=30Thus, 30 two-digit numbers are divisible by 3.
23576.

Quardric equation

Answer» Two x square+kx+3=0 give me solution
23577.

Root 2 + root 5 is an irrational number

Answer»
23578.

Write the roots of x^2

Answer»
23579.

If sina- cosa=0 then find the value if sin^4+cos^4

Answer» {tex}\\frac{1}{2}{/tex}
23580.

18+18=?

Answer» 36
23581.

Support material 2017-2018

Answer» Get revision notes from here :\xa0https://mycbseguide.com/cbse-revision-notes.html
23582.

Find the mean missing two frequency

Answer»
23583.

Volume of frustum formula derive

Answer»
23584.

A+B+B+B+80+90=______

Answer» Wrong its 100
23585.

What is common diffrence

Answer» Constant value
The difference b/ w two succesive numbers .. whenever no. Is an Ap ..
Common difference is the difference between two term of AP a2-a1 example 2,4,6...........D=a2-a1=4-2=2
Same difference
23586.

Solve for x: 4x^2 + 4bx - (a^2 - b^2) =0

Answer» Ok done
23587.

TanA=1/2 &cotB=3 what is the value of A+ B

Answer» TanA+ cot B = 7/2..
23588.

A wheel of a cart makes 4 revolutions per second . If the diameter of wheel is 84cm , find its speed

Answer» SPEED = 1056m/s..
23589.

9x+12y=0

Answer» 3x =-4y..
23590.

4 drigat samikaran swadyay 4

Answer»
23591.

Basic proportionality thrm

Answer» Basic Proportionality Theorem : If a line is drawn parallel to one side of a triangle intersecting other two sides, then it divides the two sides in the same ratio.
23592.

Math paper ka print kaise nikale

Answer»
23593.

Find the area of a sector of a circle with radius 6 cm if angle of sector is 60°.

Answer» 132/7 cm sq
132/7
23594.

Hello...koun koun jage ho Abhi bhi???..

Answer»
23595.

Find √2and √3

Answer»
23596.

Trigo last ex 9

Answer» Get NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
23597.

If sum of n numbers in an AP is 3n*n÷2+5n÷2 then find an25

Answer»
23598.

How do we take out the value of sin ,cos ,tan ,cosec,sec,cot more than90°

Answer» What is ASTP
By using ASTP
23599.

Split 207 into three parts such that these are in AP and the product of two smaller parts is 4623.

Answer» Let the four parts be (a - d), a and (a + d).{tex}\\therefore{/tex}\xa0a - d + a + a + d = 207{tex}\\Rightarrow{/tex}\xa03a = 207{tex}\\Rightarrow{/tex}\xa0a = 69According to given information,{tex}\\Rightarrow ( a - d ) \\times a = 4623{/tex}{tex}\\Rightarrow ( 69 - d ) \\times 69 = 4623{/tex}{tex}\\Rightarrow{/tex}\xa069 - d = 67{tex}\\Rightarrow{/tex} d = 2Thus, the three parts are a - d, a, a+ d i.e., 67, 69, 71.
23600.

Mera un bhai bandu se sadar anurod ha ki ?????batte km kre answer bhi de.

Answer»