Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 23601. |
Prove that tan Square A-tan square B =sin square A -sin square B ➗ by cos square A *cos squareB |
| Answer» {tex}L H S = \\tan ^ { 2 } A - \\tan ^ { 2 } B{/tex}{tex}= \\frac { \\sin ^ { 2 } A } { \\cos ^ { 2 } A } - \\frac { \\sin ^ { 2 } B } { \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A \\cos ^ { 2 } B - \\sin ^ { 2 } B \\cos ^ { 2 } A } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A \\left( 1 - \\sin ^ { 2 } B \\right) - \\sin ^ { 2 } B \\left( 1 - \\sin ^ { 2 } A \\right) } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A - \\sin ^ { 2 } A \\sin ^ { 2 } B - \\sin ^ { 2 } B + \\sin ^ { 2 } B \\sin ^ { 2 } A } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A - \\sin ^ { 2 } B } { \\cos ^ { 2 } A \\cos ^ { 2 } B } = R H S{/tex}\xa0 | |
| 23602. |
Nayra whenever you come please ask a new question |
| Answer» | |
| 23603. |
For some integer m what form every positive even integer can be expressed |
| Answer» | |
| 23604. |
sin^2+cos^2= |
|
Answer» 1 1 |
|
| 23605. |
How many chapters are in final |
| Answer» 15 | |
| 23606. |
2÷2×2+2-2= |
|
Answer» 2 is the answer 2 2 2 2 |
|
| 23607. |
who is going to be appear in fiit jee ftre 2017 examination on 24 dec |
| Answer» | |
| 23608. |
X square + one upon x square is equal to 2 then find x cube + one upon x q |
| Answer» | |
| 23609. |
What is a trignomeyry |
| Answer» We cqn learn it from its name as see Tri means three ,Gon means sides and metric means meaurement .write?Therefore its mean that measurement of sides of triangle | |
| 23610. |
7-[-6{-9+(3*5-7)}] |
|
Answer» -50 1 is the correct answer 1 E |
|
| 23611. |
Kya koi maths ke my cbse guide wala all sample paper send kar skta hai |
| Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html | |
| 23612. |
find the sumof all three digit number which is divisible by 13 |
| Answer» According to question the three-digit numbers which are divisible by 13 are 104, 117, 130, 143,.…… 938.This forms\xa0an AP in which a = 104, d = (117 – 104) = 13 and\xa0l = 938 (last term)Let the number of terms be n\xa0Then Tn\xa0= 938{tex}\\Rightarrow{/tex}a+(n-1)d=988{tex}\\Rightarrow{/tex}104+(n-1){tex}\\times{/tex}13=988{tex}\\Rightarrow{/tex}13n=897{tex}\\Rightarrow{/tex}n=69Therefore required sum={tex}\\frac{n}{2}{/tex}(a+l)={tex}\\frac{{69}}{2}{/tex}[104+988]=69{tex}\\times{/tex}546=37674Hence, the sum of all three digit\xa0numbers which are\xa0divisible by 13 is equal to 37674. | |
| 23613. |
Find the greatest number which gives same remainder for 319 as well as 241 |
| Answer» | |
| 23614. |
Total number of face cards and picture cards |
| Answer» | |
| 23615. |
What is tan 90 |
|
Answer» not defined Not defined |
|
| 23616. |
9999999×9999 |
| Answer» 99989990001 | |
| 23617. |
If sin |
| Answer» | |
| 23618. |
Sin-cos=1/2ToFind1/sin+cos |
| Answer» | |
| 23619. |
Use Euclid\'s division algorithm to find hcf of 196 and 38220 |
| Answer» ans wull be 195 | |
| 23620. |
All chapt |
| Answer» | |
| 23621. |
P k |
| Answer» | |
| 23622. |
Sec+tan=pSec-tan=? |
| Answer» 1/p | |
| 23623. |
2x+4x= |
|
Answer» 6x 6x |
|
| 23624. |
Are queen ke liya bade Wala sorry.anjali |
| Answer» | |
| 23625. |
Aaj chat padh ke maza aa gya ?? harsh aur.....ypu read ??.. |
|
Answer» Nhi ishi mera kahne ka mtlab ye hai ki log itne diwane , pagalpan hote h ki bina jane i ....u word iska mazak uda dete h ... Very bad habit.. ?? Bhagg yaha sa |
|
| 23626. |
Show that a number of the form 14^n,where n is natural number can never end with digit zero. |
| Answer» | |
| 23627. |
5+5+5=550 how |
| Answer» 545 +5=550 by changing only one line plus mark into four | |
| 23628. |
If one root of the quadratic equation ax² +by+c=0 is double the other then show that 2b²=9ac |
| Answer» | |
| 23629. |
A conical tent has 60 angle at the vertex find the ratio of its radius and slant height |
| Answer» Sayad........ 1:2 | |
| 23630. |
The sum of the first n terms of an AP is given by Sn=2nsq.+3n. Find the sixteenth term of the AP |
| Answer» | |
| 23631. |
Without dividing write the decimal expansion of 43/80 |
| Answer» .5 | |
| 23632. |
Easy TrickS |
| Answer» | |
| 23633. |
If the first term of an AP is -4and common difference is 2 then find the value of a |
|
Answer» -4 -4 |
|
| 23634. |
Are the optional exercises needed for exam |
|
Answer» Yes it is more important than exercises I meant Indian It is needed if you are an infian |
|
| 23635. |
How to express 140 as a product of its prime factors |
| Answer» 70*2, 14*5, 7*2. | |
| 23636. |
What\'s the formulae for LSA of cylinder?? |
| Answer» L.S.A.= 2πrh | |
| 23637. |
The nth term of an APcannot be n^2+1 justify |
| Answer» | |
| 23638. |
Check whether (5,-2),(6,4),(7,-2)are the vertices of an isosceles triangle |
| Answer» Let A {tex}\\rightarrow{/tex} (5, -2), B {tex}\\rightarrow{/tex} (6, 4) and C {tex}\\rightarrow{/tex} (7, -2)Then,{tex}AB = \\sqrt {{{(6 - 5)}^2} + {{(4 - ( - 2))}^2}} = \\sqrt {{{(1)}^2} + {{(6)}^2}}{/tex}{tex} = \\sqrt {1 + 36} = \\sqrt {37}{/tex}{tex}BC = \\sqrt {{{(7 - 6)}^2} + {{( - 2 - 4)}^2}} = \\sqrt {{{(1)}^2} + {{( - 6)}^2}}{/tex}{tex}= \\sqrt {1 + 36} = \\sqrt {37}{/tex}We see that AB = BCtherefore, ABC is an isosceles triangle.Let D be the mid-point of BC. Then, coordinates of D are {tex}\\left( \\frac { 5 + 7 } { 2 } , \\frac { - 2 - 2 } { 2 } \\right){/tex}\xa0i.e, (6, -2)Therefore, AD =\xa0{tex}\\sqrt { ( 6 - 6 ) ^ { 2 } + ( 4 + 2 ) ^ { 2 } } = \\sqrt { 36 } = 6{/tex} | |
| 23639. |
How many interger between 100 -200 which is division by 9 |
| Answer» Numbers between 100 – 200 divisible by 9 are 108, 117, 126, … 198.Here, a= 108, d = 117 – 108 = 9 and an\xa0= 198.⇒ a + (n – 1)d = 198 [{tex}\\because{/tex}an\xa0= a + (n – 1)d]⇒ 108 + (n – 1)9 =198.{tex}\\implies108+9n-9=198\\\\{\\implies9n+99=198}\\\\{\\implies }{9(n+11)=198}{/tex}⇒ 11 + n =\xa0{tex}\\frac { 198 } { 9 }{/tex}⇒ n = 22 – 11.⇒ n = 11Now, S\xadn\xa0=\xa0{tex}\\frac { n } { 2 }{/tex}\xa0[2a+ (n – 1)d]⇒ S11\xa0=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[2(108) + (11 – 1) (9)]=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[216 + 99 – 9]=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[216 + 90]=\xa0{tex} \\frac { 11 } { 2 }{/tex}\xa0× 306= 11 × 153⇒ S11\xa0= 1683. | |
| 23640. |
The sum of first n term of an ap is given by sn=2n2+3n find the sixteenth term of the ap |
| Answer» | |
| 23641. |
Find the missing term AP 7,_,_,29/2 |
| Answer» 12 and 17 | |
| 23642. |
Plzz help. Me in understanding Pythagoras theorem |
| Answer» | |
| 23643. |
Simple form of linear question in two variable |
| Answer» | |
| 23644. |
Hi find the 11 term from the last term of the AP 10, 7, 4,_, -62 |
| Answer» a = – 62, d = 3a11 = a + 10d= – 62 + 10(3)= – 32 | |
| 23645. |
Give branched chain stracture of butyne |
| Answer» Ch triple bond c - ch2 - ch3 | |
| 23646. |
Given 15 cot a=8 find sin a and sec a |
| Answer» 15 cot A = 8cotA= 8/15 = base/perpendicularbase= 8 and perpendicular = 15, So hypotenuse = √ base2\xa0+ perpendicular2\xa0= √82+152\xa0= √64+225 = √289 = 17base =8, perpendicular = 15 and hypotenuse = 17Sin A = perpendicular/ hypotenuse = 15/17Sec A = hypotenuse/ base = 17/8\xa0 | |
| 23647. |
If a and b are positive integers then prove that a+b%2 and a-b%2 one is even and other is odd |
| Answer» If a and b are odd numbers then it should be in 2q+1 or 2q+3 form where\xa0q is a positive integer.Let a = 2q + 3 , b = 2q + 1 and\xa0a > bNow,\xa0{tex}\\frac{a + b } {2} = \\frac{ 2q + 3 + 2q + 1}{2}{/tex}{tex}= \\frac { 4 q + 4 } { 2 }{/tex}= 2q + 2{tex}\\frac{a+b}{2}{/tex}=2(q+1)\xa0= an even number..........(1)Now\xa0{tex}\\frac { a - b } { 2 } = \\frac { ( 2 q + 3 ) - ( 2 q + 1 ) } { 2 }{/tex}{tex}= \\frac { 2 q + 3 - 2 q - 1 } { 2 }{/tex}{tex}\\frac{a-b}{2}= \\frac { 2 } { 2 }{/tex}\xa0= 1 = an odd number..........(2)Hence From (1) and (2)\xa0{tex}\\frac{a+b}{2}{/tex} and\xa0{tex}\\frac{a-b}{2}{/tex} are even and odd numbers respectively | |
| 23648. |
Triangle ABC is a right angled at B. BD is perpendicular upon AC.IfbAD=a,CD=b thenAB SQUARE= |
| Answer» a square+b square+2ab-BC square | |
| 23649. |
If Sp=q , Sq=p find Sp+q |
|
Answer» Sp+q=sp+sp(sp=q)=2spOr sp+q=q+q(sp=q)=2q P+q-n |
|
| 23650. |
Board sample paper 2018 |
| Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html | |