Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23601.

Prove that tan Square A-tan square B =sin square A -sin square B ➗ by cos square A *cos squareB

Answer» {tex}L H S = \\tan ^ { 2 } A - \\tan ^ { 2 } B{/tex}{tex}= \\frac { \\sin ^ { 2 } A } { \\cos ^ { 2 } A } - \\frac { \\sin ^ { 2 } B } { \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A \\cos ^ { 2 } B - \\sin ^ { 2 } B \\cos ^ { 2 } A } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A \\left( 1 - \\sin ^ { 2 } B \\right) - \\sin ^ { 2 } B \\left( 1 - \\sin ^ { 2 } A \\right) } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A - \\sin ^ { 2 } A \\sin ^ { 2 } B - \\sin ^ { 2 } B + \\sin ^ { 2 } B \\sin ^ { 2 } A } { \\cos ^ { 2 } A \\cos ^ { 2 } B }{/tex}{tex}= \\frac { \\sin ^ { 2 } A - \\sin ^ { 2 } B } { \\cos ^ { 2 } A \\cos ^ { 2 } B } = R H S{/tex}\xa0
23602.

Nayra whenever you come please ask a new question

Answer»
23603.

For some integer m what form every positive even integer can be expressed

Answer»
23604.

sin^2+cos^2=

Answer» 1
1
23605.

How many chapters are in final

Answer» 15
23606.

2÷2×2+2-2=

Answer» 2 is the answer
2
2
2
2
23607.

who is going to be appear in fiit jee ftre 2017 examination on 24 dec

Answer»
23608.

X square + one upon x square is equal to 2 then find x cube + one upon x q

Answer»
23609.

What is a trignomeyry

Answer» We cqn learn it from its name as see Tri means three ,Gon means sides and metric means meaurement .write?Therefore its mean that measurement of sides of triangle
23610.

7-[-6{-9+(3*5-7)}]

Answer» -50
1 is the correct answer
1
E
23611.

Kya koi maths ke my cbse guide wala all sample paper send kar skta hai

Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
23612.

find the sumof all three digit number which is divisible by 13

Answer» According to question the three-digit numbers which are divisible by 13 are 104, 117, 130, 143,.…… 938.This forms\xa0an AP in which a = 104, d = (117 – 104) = 13 and\xa0l = 938 (last term)Let the number of terms be n\xa0Then Tn\xa0= 938{tex}\\Rightarrow{/tex}a+(n-1)d=988{tex}\\Rightarrow{/tex}104+(n-1){tex}\\times{/tex}13=988{tex}\\Rightarrow{/tex}13n=897{tex}\\Rightarrow{/tex}n=69Therefore required sum={tex}\\frac{n}{2}{/tex}(a+l)={tex}\\frac{{69}}{2}{/tex}[104+988]=69{tex}\\times{/tex}546=37674Hence, the sum of all three digit\xa0numbers which are\xa0divisible by 13 is equal to 37674.
23613.

Find the greatest number which gives same remainder for 319 as well as 241

Answer»
23614.

Total number of face cards and picture cards

Answer»
23615.

What is tan 90

Answer» not defined
Not defined
23616.

9999999×9999

Answer» 99989990001
23617.

If sin

Answer»
23618.

Sin-cos=1/2ToFind1/sin+cos

Answer»
23619.

Use Euclid\'s division algorithm to find hcf of 196 and 38220

Answer» ans wull be 195
23620.

All chapt

Answer»
23621.

P k

Answer»
23622.

Sec+tan=pSec-tan=?

Answer» 1/p
23623.

2x+4x=

Answer» 6x
6x
23624.

Are queen ke liya bade Wala sorry.anjali

Answer»
23625.

Aaj chat padh ke maza aa gya ?? harsh aur.....ypu read ??..

Answer» Nhi ishi mera kahne ka mtlab ye hai ki log itne diwane , pagalpan hote h ki bina jane i ....u word iska mazak uda dete h ... Very bad habit.. ??
Bhagg yaha sa
23626.

Show that a number of the form 14^n,where n is natural number can never end with digit zero.

Answer»
23627.

5+5+5=550 how

Answer» 545 +5=550 by changing only one line plus mark into four
23628.

If one root of the quadratic equation ax² +by+c=0 is double the other then show that 2b²=9ac

Answer»
23629.

A conical tent has 60 angle at the vertex find the ratio of its radius and slant height

Answer» Sayad........ 1:2
23630.

The sum of the first n terms of an AP is given by Sn=2nsq.+3n. Find the sixteenth term of the AP

Answer»
23631.

Without dividing write the decimal expansion of 43/80

Answer» .5
23632.

Easy TrickS

Answer»
23633.

If the first term of an AP is -4and common difference is 2 then find the value of a

Answer» -4
-4
23634.

Are the optional exercises needed for exam

Answer» Yes it is more important than exercises
I meant Indian
It is needed if you are an infian
23635.

How to express 140 as a product of its prime factors

Answer» 70*2, 14*5, 7*2.
23636.

What\'s the formulae for LSA of cylinder??

Answer» L.S.A.= 2πrh
23637.

The nth term of an APcannot be n^2+1 justify

Answer»
23638.

Check whether (5,-2),(6,4),(7,-2)are the vertices of an isosceles triangle

Answer» Let A {tex}\\rightarrow{/tex} (5, -2), B {tex}\\rightarrow{/tex} (6, 4) and C {tex}\\rightarrow{/tex} (7, -2)Then,{tex}AB = \\sqrt {{{(6 - 5)}^2} + {{(4 - ( - 2))}^2}} = \\sqrt {{{(1)}^2} + {{(6)}^2}}{/tex}{tex} = \\sqrt {1 + 36} = \\sqrt {37}{/tex}{tex}BC = \\sqrt {{{(7 - 6)}^2} + {{( - 2 - 4)}^2}} = \\sqrt {{{(1)}^2} + {{( - 6)}^2}}{/tex}{tex}= \\sqrt {1 + 36} = \\sqrt {37}{/tex}We see that AB = BCtherefore, ABC is an isosceles triangle.Let D be the mid-point of BC. Then, coordinates of D are {tex}\\left( \\frac { 5 + 7 } { 2 } , \\frac { - 2 - 2 } { 2 } \\right){/tex}\xa0i.e, (6, -2)Therefore, AD =\xa0{tex}\\sqrt { ( 6 - 6 ) ^ { 2 } + ( 4 + 2 ) ^ { 2 } } = \\sqrt { 36 } = 6{/tex}
23639.

How many interger between 100 -200 which is division by 9

Answer» Numbers between 100 – 200 divisible by 9 are 108, 117, 126, … 198.Here, a= 108, d = 117 – 108 = 9 and an\xa0= 198.⇒ a + (n – 1)d = 198 [{tex}\\because{/tex}an\xa0= a + (n – 1)d]⇒ 108 + (n – 1)9 =198.{tex}\\implies108+9n-9=198\\\\{\\implies9n+99=198}\\\\{\\implies }{9(n+11)=198}{/tex}⇒ 11 + n =\xa0{tex}\\frac { 198 } { 9 }{/tex}⇒ n = 22 – 11.⇒ n = 11Now, S\xadn\xa0=\xa0{tex}\\frac { n } { 2 }{/tex}\xa0[2a+ (n – 1)d]⇒ S11\xa0=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[2(108) + (11 – 1) (9)]=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[216 + 99 – 9]=\xa0{tex}\\frac { 11 } { 2 }{/tex}\xa0[216 + 90]=\xa0{tex} \\frac { 11 } { 2 }{/tex}\xa0× 306= 11 × 153⇒ S11\xa0= 1683.
23640.

The sum of first n term of an ap is given by sn=2n2+3n find the sixteenth term of the ap

Answer»
23641.

Find the missing term AP 7,_,_,29/2

Answer» 12 and 17
23642.

Plzz help. Me in understanding Pythagoras theorem

Answer»
23643.

Simple form of linear question in two variable

Answer»
23644.

Hi find the 11 term from the last term of the AP 10, 7, 4,_, -62

Answer» a = – 62, d = 3a11 = a + 10d= – 62 + 10(3)= – 32
23645.

Give branched chain stracture of butyne

Answer» Ch triple bond c - ch2 - ch3
23646.

Given 15 cot a=8 find sin a and sec a

Answer» 15 cot A = 8cotA= 8/15 = base/perpendicularbase= 8 and perpendicular = 15, So hypotenuse = √ base2\xa0+ perpendicular2\xa0= √82+152\xa0= √64+225 = √289 = 17base =8, perpendicular = 15 and hypotenuse = 17Sin A = perpendicular/ hypotenuse = 15/17Sec A = hypotenuse/ base = 17/8\xa0
23647.

If a and b are positive integers then prove that a+b%2 and a-b%2 one is even and other is odd

Answer» If a and b are odd numbers then it should be in 2q+1 or 2q+3 form where\xa0q is a positive integer.Let a = 2q + 3 , b = 2q + 1 and\xa0a > bNow,\xa0{tex}\\frac{a + b } {2} = \\frac{ 2q + 3 + 2q + 1}{2}{/tex}{tex}= \\frac { 4 q + 4 } { 2 }{/tex}= 2q + 2{tex}\\frac{a+b}{2}{/tex}=2(q+1)\xa0= an even number..........(1)Now\xa0{tex}\\frac { a - b } { 2 } = \\frac { ( 2 q + 3 ) - ( 2 q + 1 ) } { 2 }{/tex}{tex}= \\frac { 2 q + 3 - 2 q - 1 } { 2 }{/tex}{tex}\\frac{a-b}{2}= \\frac { 2 } { 2 }{/tex}\xa0= 1 = an odd number..........(2)Hence From (1) and (2)\xa0{tex}\\frac{a+b}{2}{/tex} and\xa0{tex}\\frac{a-b}{2}{/tex} are even and odd numbers respectively
23648.

Triangle ABC is a right angled at B. BD is perpendicular upon AC.IfbAD=a,CD=b thenAB SQUARE=

Answer» a square+b square+2ab-BC square
23649.

If Sp=q , Sq=p find Sp+q

Answer» Sp+q=sp+sp(sp=q)=2spOr sp+q=q+q(sp=q)=2q
P+q-n
23650.

Board sample paper 2018

Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html