Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23701.

2(2x-1/x+3)-3(x+3/2x-1)=5

Answer» x= -10 & - 1/5
23702.

When was exam.start class 10 cbse

Answer» 2 march 2018
23703.

class 10 latest mock paper solution

Answer»
23704.

Volume of cone

Answer» 1/3 py r square h
1/3πr2h
23705.

Find the middle term of the AP 6,13,20......... 216

Answer» The given AP is 6,13,20,...,216a = 6 and l = 216So the middle term will be average of a and lHence middle term = {tex}=\\frac{\\mathrm a+\\mathrm l}2{/tex}{tex}=\\frac{6+216}2=\\frac{222}2{/tex}\xa0=111So the middle term of this AP is 111
23706.

What is tangant ?

Answer» A line touches the circle externally and make 90 degree with the center
A line touch the circle externally at one point
A line touching circle at only one point externaly.
A line meeting a circle only in one point is called tangent.
Tangent is a line which touch a circle only at one point
23707.

How to find frequency for finding mode

Answer» The largest frequency help to find the mode
23708.

Verify that 3,-1,-1/3,are the zeroes of a cubic polynomial p(x) =3x²- 5x²-11x²-3

Answer» Given polynomial is p(x) = 3x3 -5x2 - 11x - 33Put x = 3 in p(x), we get{tex} \\therefore{/tex}p(3) = 3 {tex} \\times{/tex}\xa033 - 5 {tex} \\times{/tex}\xa032 - 11 {tex} \\times{/tex}\xa03 - 3 = 81 - 45 - 33 - 3 = 0Put x = -1 in p(x), we getp(-1) = 3 {tex} \\times{/tex}\xa0(-1)3 - 5\xa0{tex} \\times{/tex} (-1)2 -11 {tex} \\times{/tex}\xa0(-1) - 3 = - 3 - 5 + 11 - 3 = 0Put x = {tex}- \\frac { 1 } { 3 }{/tex} in p(x), we getand,\xa0{tex} p \\left( - \\frac { 1 } { 3 } \\right){/tex}={tex} 3 \\times \\left( - \\frac { 1 } { 3 } \\right) ^ { 3 } - 5 \\times \\left( - \\frac { 1 } { 3 } \\right) ^ { 2 } - 11 \\times \\left( - \\frac { 1 } { 3 } \\right) - 3{/tex}={tex} - \\frac { 1 } { 9 } - \\frac { 5 } { 9 } + \\frac { 11 } { 3 } - 3{/tex}= 0\xa0So, 3,-1 and\xa0{tex} -\\frac 13{/tex}\xa0are the zeros of polynomial p(x).Let,\xa0{tex} \\alpha = 3 , \\beta = - 1 \\text { and } \\gamma = - \\frac { 1 } { 3 }{/tex} .Then,{tex} \\alpha + \\beta + \\gamma{/tex} ={tex} 3 - 1 - \\frac { 1 } { 3 } = \\frac { 5 } { 3 }{/tex}, and\xa0{tex} - \\frac { \\text { Coefficient of } x ^ { 2 } } { \\text { Coefficient of } x ^ { 3 } } = - \\left( \\frac { - 5 } { 3 } \\right) = \\frac { 5 } { 3 }{/tex}{tex} \\therefore \\quad \\alpha + \\beta + \\gamma = - \\frac { \\text { Coefficient of } x ^ { 2 } } { \\text { Coefficient of } x ^ { 3 } }{/tex}{tex} \\alpha \\beta + \\beta \\gamma + \\gamma \\alpha{/tex} = {tex} 3 \\times ( - 1 ) + ( - 1 ) \\times \\left( - \\frac { 1 } { 3 } \\right) + \\left( - \\frac { 1 } { 3 } \\right) \\times 3{/tex}=\xa0{tex} - 3 + \\frac { 1 } { 3 } - 1 = - \\frac { 11 } { 3 }{/tex}and,\xa0{tex} \\frac { \\text { Coefficient of } x } { \\text { Coefficient of } x ^ { 3 } } = - \\frac { 11 } { 3 }{/tex}{tex} \\therefore \\quad \\alpha \\beta + \\beta \\gamma + \\gamma \\alpha = \\frac { \\text { Coefficient of } x } { \\text { Coefficient of } x ^ { 3 } }{/tex}{tex} \\alpha \\beta \\gamma = 3 \\times ( - 1 ) \\times \\left( - \\frac { 1 } { 3 } \\right) = 1{/tex}......... (i)And,\xa0{tex} - \\frac { \\text { Constant term } } { \\text { Coefficient of } x ^ { 3 } } = - \\left( \\frac { - 3 } { 3 } \\right) = 1{/tex} ........ (ii)From (i) and (ii){tex} \\therefore \\quad \\alpha \\beta \\gamma = - \\frac { \\text { Constant term } } { \\text { Coefficient of } x ^ { 3 } }{/tex}
23709.

Find the circumference if the area of the circle is 38.5cm.

Answer» 22
22
22
Circumference=77
23710.

64 +10

Answer» 74
74
23711.

what is SN formula

Answer» Sn=n/2(2a+(n-1)d)
23712.

In the given figure AC=24cm, AB=7cm and angle BOD =90°. Find the area of the shaded region.

Answer» Where is the figure
23713.

Will the questions in optional exercise will come in exams?

Answer» 50 -50 chances.
No
Yes,it\'s very important exercise
Less chances. Only two questions can come like that
23714.

Cosec =3/5 then find the value of (5 cosec theeta -4 tan theeta /sec theeta +cot theeta )

Answer» Correct answer is 11/25
May be 40/31..
23715.

2 cos2 theeta .1 2/1+cot2 theta =2

Answer»
23716.

Paper comes from ncert or another material

Answer»
23717.

Ncert question and answers of circle

Answer» Check NCERT Questions and Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
23718.

4x/2

Answer» x=0.5
23719.

Ncert question of circle

Answer» Check NCERT Questions and Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
23720.

Can two no. have 18 and 380 their hcf and lcm respectively. Give reason

Answer» No, because HCF is always the Factor Of LCM
23721.

Circle invert solution

Answer»
23722.

What is eculid lemma

Answer» For every two positive integers a,b there exists another two integers b and r such that a=bq+r
Euclid\'s lemma is a lemma that captures a fundamental property of prime numbers, namely: Euclid\'s lemma - If a prime p divides the product ab of two integers a and b, p must divide at least one of those integers a and b. \u200eThe basis of Euclidean division algorithm is Euclid\'s division lemma. To calculate the Highest Common Factor (HCF) of two positive integers a and b ,we use Euclid\'s division algorithm. HCF is the largest number which exactly divides two or more positive integers.
a=bq+r
23723.

Find 32 percent of425

Answer» 32 % of 42532 x425/10032 x 85/2032 x 17/48 x17= 136\xa0
136
23724.

Divide a line segment of length 8cm internally in the ratio 3:4

Answer» Steps of construction STEP I Draw the line segment AB of length 8 cm.STEP II Draw any ray AX making an acute angle {tex}\\angle{/tex}BAX with AB.STEP III Draw a ray BY parallel to AX by making\xa0{tex}\\angle A B Y{/tex}\xa0equal to {tex}\\angle B A X.{/tex}STEP IV Mark the three point A1, A2, A3 on AX and 4 points B1, B2, B3, B4 on BY such thatAA1 = A1A2 = A2A3 = BB1 = B1B2 = B2B3 = B3B4.STEP V Join A3 B4. Suppose it intersects AB at a point P.Then, P is the point dividing AB internally in the ratio 3:4.
23725.

If the point (p, q), (m, n) and(p-n, q-m) are Colliner show that pn=qm

Answer» Given points are collinear. Therefore[p {tex}\\times{/tex}\xa0n + m(q - n) + (p - m) q] - [m {tex}\\times{/tex}\xa0q + (p - m) n + p (q - n)] = 0{tex}\\Rightarrow{/tex}\xa0(pn + qm - mn + pq - mq) - (mq + pn - mn + pq - pn) = 0{tex}\\Rightarrow{/tex}\xa0(pn + p q - mn) - (mq - mn + pq) = 0{tex}\\Rightarrow{/tex}\xa0pn - mq = 0{tex}\\Rightarrow{/tex}\xa0pn = qm
23726.

Value of Sin90°

Answer» Yrr ye San to book m hi mil jayega
Sin90=1
1
1
The value of Sin 90° =1 according to trigonometry table
23727.

If A,B and C are the interior angles of triangle ABC, find that tan(B+C)/2

Answer» In\xa0{tex} \\Delta A B C{/tex}, we have,A + B + C = 180°{tex} \\Rightarrow{/tex}\xa0B + C =180° - ADividing 2 on both sides, we get\xa0{tex} \\Rightarrow \\quad \\frac { B + C } { 2 } = 90 ^ { \\circ } - \\frac { A } { 2 }{/tex}Applying Tan on both sides\xa0{tex} \\Rightarrow \\tan \\left( \\frac { B + C } { 2 } \\right){/tex}{tex} = \\tan \\left( 90 ^ { \\circ } - \\frac { A } { 2 } \\right){/tex}{tex} \\Rightarrow \\tan \\left( \\frac { B + C } { 2 } \\right) = \\cot \\frac { A } { 2 }{/tex}
23728.

2 sin 68/cos 22 -2 cot 15/5tan 75 =5tan45 tan 20 tan 40 tan 5 tan 7/5

Answer» {tex}\\frac{{2\\sin 68^\\circ }}{{\\cos 22^\\circ }} - \\frac{{2\\cot 15^\\circ }}{{5\\tan 75^\\circ }} - \\frac{{3\\tan 45^\\circ \\tan 20^\\circ \\tan 40^\\circ \\tan 50^\\circ \\tan 70^\\circ }}{5}{/tex}{tex} = \\frac{{2\\sin \\left( {90^\\circ - 22^\\circ } \\right)}}{{\\cos 22^\\circ }} - \\frac{{2\\cot \\left( {90^\\circ - 75^\\circ } \\right)}}{{5\\tan 75^\\circ }}{/tex}\xa0{tex} - \\frac{{3\\tan 45^\\circ \\tan \\left( {90^\\circ - 70^\\circ } \\right)\\tan \\left( {90^\\circ - 50^\\circ } \\right)\\tan 50^\\circ \\tan 70^\\circ }}{5}{/tex}{tex} = \\frac{{2\\cos 22^\\circ }}{{\\cos 22^\\circ }} - \\frac{{2\\tan 75^\\circ }}{{5\\tan 75^\\circ }} - \\frac{{3 \\times 1 \\times \\cot 70^\\circ \\times \\tan 50^\\circ \\times \\frac{1}{{\\cot 50^\\circ }} \\times \\frac{1}{{\\cot 70^\\circ }}}}{5}{/tex}{tex} = 2 - \\frac{2}{5} - \\frac{3}{5}{/tex}{tex} = \\frac{{10 - 2 - 3}}{5} = \\frac{5}{5} = 1{/tex}
23729.

I want to know the question were arranged form ncert and examoler or from every book

Answer»
23730.

Find the sum of the first 40 positive integers divisible by 6

Answer» The first 40 positive integers divisible by 6 are 6, 12, 18, 24, .....Here, a2 - a1 = 12 - 6 = 6a3 - a2 = 18 - 12 = 6a4 - a3 = 24 - 18 = 6i.e. ak+1 - ak is the same everytime.So, the above list of numbers from an AP.Here, a = 6d = 6n = 40{tex}\\therefore {/tex}\xa0Sum of the first 40 positive integers = S40{tex} = \\frac{{40}}{2}\\left[ {2a + (40 - 1)d} \\right]{/tex}\xa0.........{tex}\\because {S_n} = \\frac{n}{2}\\left[ {2a + (n - 1)d} \\right]{/tex}= 20[2a + 39d]{tex} = (20)[2 \\times 6 + 39 \\times 6]{/tex}= (20) (246)= 4920
23731.

What is tha passing marks in board exam

Answer» 27 you have to gain in all subjects if you gain it then out of 20 marks your teacher will giving you
33%
27/80
23732.

2017 paper board exam

Answer» Check last year papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
23733.

sinA _ 2cosA = 1Prove that2cosA _ sinA = 2

Answer»
23734.

Ch 6 triangle exs 6.5 question 11

Answer»
23735.

What is the maximum number of parallel tangent a circle can have on a diameter?

Answer» 2 PAIR of tangents from both vertically and horizontally
Only 1 pair of // tangents can be drawn on a diameter of a circle
23736.

What number should be added to polynomial x² + 7 x - 35 show that 3 is the Zero of the polynomial

Answer» - 5
23737.

What is cube root of 74

Answer» 405224
23738.

If the perimeter of a semi circular protractor is 36 cm,find the diameter of the protractor

Answer» πr=3622/7 ×r= 36r= 36×7/22r=18×7/11d=2×18×7/11d=22.9
Perimeter of semi circular is given by = π r+2r36 = πr+2r36 = r( π+2)36 = r(22/7 +2)36 = r(22+14/7)36= r(36/7)1 = r/7r= 7 cm\xa0d = 2r = 2*7 = 14 cm
SorRy but Wright answer is 11.45
is it 22.90
23739.

SOLVE BY SUBSTITUTION METHOD 3x+y=3 And 9x_3y =9SOLVE THIS PROBLEM

Answer» 3x+y = 3y= 3-3xSubstituting the value of y in second equation , we get\xa09x - 3(3-3x) = 99x -9 +9x = 918x-9= 918x = 9+9 = 18x= 18/18 = 1y= 3-3*1= 3-3= 0x= 1 and y= 0
23740.

For what value of n, are the nth terms of two A. Ps 63, 65, 67,.... and 3, 10, 17,.... equal?

Answer» First APs63, 65, 67, ......Here, a = 63d = 65 - 63 = 2{tex}\\therefore {/tex}\xa0nth term = 63 + (n - 1)2\xa0{tex}\\because {/tex}\xa0an = a + (n - 1)dSecond APs3, 10, 17, .....Here, a = 3d = 10 - 3 = 7{tex}\\therefore {/tex}\xa0nth term = 3 + (n - 1)7\xa0{tex}\\because {/tex}\xa0an = a+(n - 1)dIf the n th terms of two APs are equal then63 + (n - 1)2 = 3 + (n - 1)7{tex} \\Rightarrow {/tex}\xa0(n - 1)2 - (n - 1)7 = 3 - 63{tex} \\Rightarrow {/tex}\xa0(n - 1) (2 - 7) = -60{tex} \\Rightarrow {/tex}\xa0(n - 1) (-5) = -60{tex} \\Rightarrow n - 1 = \\frac{{ - 60}}{{ - 5}}{/tex}{tex} \\Rightarrow {/tex}\xa0n - 1 = 12{tex} \\Rightarrow {/tex}\xa0n = 12 + 1{tex} \\Rightarrow {/tex}\xa0n = 13Hence, for n = 13th terms of the two APs are equal
23741.

The surface area of a sphere is 616 cm ki square find its radius

Answer» 4π r2\xa0=6164*22/7*r2\xa0= 616r2\xa0= 616*7/4*22r2\xa0= 154*7/22r2\xa0= 7*7r= 7 cm
23742.

Hello come here...ishi

Answer» Ishi sorry I don\'t hate u but hate another ishi
23743.

Which teem of the AP 3,15,27,39will be 132 more than its 54th term

Answer» First term of A.P. a = 3 and common difference d = 12a54 =\xa0a+(54-1)d = 3+53*12 = 3+636 = 639New term is 132 more than 639. So nth term = 132+639= 771771 = 3+(n-1)*12771= 3+12 n-12771 = 12n-912n= 771+9=780n= 780/12=65So 65 th term will be 132 more than its 54 th term.
65th
23744.

Area of square is equal to the area of triangle why?

Answer»
23745.

How to remember trigonometric ratios?

Answer»
23746.

Sorry guys

Answer»
23747.

Find HCF of (x^3-3x+2) and (x^2-4x+3)

Answer»
23748.

What is nuclear atomic size of Radium and benzene ecine

Answer» Atomic Radius of Radium is\xa0200\xa0pmThe six-membered ring in\xa0benzene\xa0is a perfect hexagon (all carbon-carbon bonds have an identical length of 1.40 Å).\xa0
23749.

The 4th vertix D of a llgm ABCD whose 3vertices are A(-2,3)B(6,7)and C(8,3) is_________.

Answer»
23750.

If the nth term of an AP is 7+4n then find the common difference

Answer» D = 4
D=7