Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23801.

If two positive integers pand q are written as p=asqare b

Answer» LCM(p,q) = a3b3and HCF(p,q) = a2bLCM(p,q)\xa0{tex}\\times{/tex}\xa0HCF(p,q) = a3b3\xa0{tex}\\times{/tex}\xa0a2b{tex}\\begin{array}{l}\\mathrm{LCM}(\\mathrm p,\\mathrm q)\\;\\times\\mathrm{HCF}(\\mathrm p,\\mathrm q)\\;=\\mathrm a^5\\mathrm b^4\\;-----(1)\\\\\\mathrm{and}\\;\\mathrm{pq}=\\mathrm a^2\\mathrm b^3\\;\\times\\mathrm a^3\\mathrm b=\\mathrm a^5\\mathrm b^4\\;------(2)\\\\\\mathrm{from}\\;\\mathrm{eq}^\\mathrm n\\;(1)\\;\\mathrm{and}\\;(2)\\\\\\mathrm{LCM}(\\mathrm p,\\mathrm q)\\;\\times\\mathrm{HCF}(\\mathrm p,\\mathrm q)\\;=\\mathrm{pq}\\\\\\\\\\end{array}{/tex}\xa0
23802.

Find first fourth terms of all

Answer» a+3d
23803.

Question papers of last10years

Answer» Bought an together with.Which is of Orange colour and it contains 10 yrs.questions chaptervise.
23804.

Which is the best book for board exam?

Answer» R. S AGRAWAL
Vidya exam book
R.D. Sharma
Yes Arya is r8
Ncert.
23805.

^\'s

Answer»
23806.

Constructions

Answer» Sach mai kya construction karna hai
23807.

Here is ananya Singh I have a question

Answer»
23808.

How to find altitude of sun

Answer»
23809.

CSA of cone

Answer» πrl
pie r l
23810.

if the common difference of A. P.is 3.a20-a15

Answer» \xa020 th term a20\xa0= a+(20-1)d = a+19d15 th term a15\xa0= a+(15-1)d = a+14da20 - a15\xa0= a+19d-(a +14d) = 19d-14d = 5d = 5*3=15
17
23811.

How can we learn trignometric ratio values easily

Answer» By a formula Pandit Badri prasadHar Har BoleHere ratio pandit/har = perpendicular/hypotenuse=sinA Ratio Badri /har =base/hypotenuse=cosA Ratio Prasad/bole=perpendicular/base=tanAThen after these 1/sinA=cosecA=hypotenuse/perpendicular 1/cosA= secA =hypotenuse/base 1/tanA=cotA = base/perpendicular Friends you can use this formula to learn trigonometry ratios easily. Thank you
By trick that you can watch on YouTube
By learning
23812.

Awsome ♥ ♥ as always

Answer»
23813.

Applying quadratic formula solve ques no 3of ex 4.3

Answer»
23814.

Cosec^263°+tan^24°/cot^266°+sec^227°

Answer» Cosec^263°+tan^24°/cot^266°+sec^227°= sec^2 27+ cot^2 66/ cot^2 66°+sec^2 27°=1[cosecA=Sec(90-A), tanA=cot(90-A)]
23815.

Perimeter of right triangle is 60cm.hypotenuse is 25cm.find the area of the triangle.

Answer» Given: a + b + 25 = 60\xa0{tex}\\Rightarrow{/tex}\xa0a + b = 35a2 + b2 = 252ab\xa0{tex}=\\frac{1}{2}\\left[(a+b)^{2}-\\left(a^{2}+b^{2}\\right)\\right]{/tex}{tex}=\\frac{1}{2}[1225-625]{/tex}{tex}=\\frac{1}{2}[600]{/tex}= 300{tex}\\therefore{/tex}\xa0area of\xa0{tex}\\triangle{/tex}\xa0= 150cm2
23816.

How to score good marks

Answer» Study well
23817.

if the sum of n term of an A.P is 3(n)2 +5n, then which of its terms is 164

Answer» Given:Sn = 3n2 + 5n\xa0and am = 164Put n = 1 and n = 2 in Sn we get, S1 = 3 + 5 = 8\xa0{tex}\\Rightarrow {/tex}\xa0a = 8 ..........(i)and S2 = 3(4) + 5(2) = 12 + 10 = 22We have an = Sn - Sn-1{tex}\\therefore{/tex}\xa0a2 = S2 - S1{tex}\\Rightarrow{/tex}\xa0a2 = 22 - 8 = 14Now\xa0d = a2\xa0- a1\xa0= 14 - 8 = 6{tex}\\therefore{/tex}\xa0am = 164\xa0{tex}\\Rightarrow {/tex}\xa0a + (m - 1)d = 164\xa0{tex}\\Rightarrow {/tex}\xa08 + (m - 1)6 = 164{tex}\\Rightarrow {/tex}\xa08 + 6m - 6 = 164{tex}\\Rightarrow {/tex}\xa06m = 162{tex}\\Rightarrow m = {{162} \\over 6} = 27{/tex}
23818.

if 6/3,a,4 are A.P find the value of a

Answer»
23819.

If sec theta + tan theta =p .Prove that =p×p-1÷p×p+1

Answer»
23820.

If Sn =2n2+2n+1 then find the value of a10

Answer»
23821.

Rational number class 10

Answer» Rational numbers are in the form of p/q and q does not equaĺ to zero
23822.

Ncert question

Answer» Check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
23823.

EF//DC FG//CB GH//BA prove that HE//AD

Answer»
23824.

How to do study of chapterwise

Answer» Read and learn one chapter everyday
23825.

How to make our full focus on studies? ?

Answer» Or other useless activities
By leaving use of mobile and tv
23826.

Which triangle have equal sides

Answer» Equilateral triangle have same sides
Equilateral triangle
23827.

Prove that tan²A+cot²A+2=sec²A cosec²A

Answer» LHS {tex}= tan^2\xa0A + cot^2\xa0A + 2{/tex}{tex}= sec^2\xa0A - 1 + cosec^2\xa0A - 1 + 2{/tex}= sec2\xa0A + cosec2\xa0A{tex}=\\frac{1}{\\cos ^{2} A}+\\frac{1}{\\sin ^{2} A}{/tex}{tex}=\\frac{\\sin ^{2} A+\\cos ^{2} A}{\\cos ^{2} A \\cdot \\sin ^{2} A}{/tex}{tex}=\\frac{1}{\\cos ^{2} A \\cdot \\sin ^{2} A}{/tex}{tex}=\\frac{1}{\\cos ^{2} A} \\times \\frac{1}{\\sin ^{2} A}{/tex}= sec2 A. cosec2\xa0A = RHS
23828.

Value of sin30

Answer»
23829.

CBSE allowded question paper

Answer» Check last year question papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
23830.

What is perimeter of semi circle

Answer» Diameter + half of circumference of circle
R(π+2)..
23831.

Tan2A=cot(A-18°) where 2A is acute angle

Answer» Its similiar to ex 8.2 question 5 of trigonometry
I think what I have written its difficult to understand
Cot (90- 2A) = cot (A- 18) = 90-2A = A - 18 = 90 +18 = A + 2A =. 108 = 3A = A = 36
23832.

If sinA=½ find the value of 2secA/(1+tan²A)

Answer»
23833.

What is the HCF of n+7 and n+13?

Answer» 1
23834.

Find roots of equation x + ^x-2 = 4

Answer»
23835.

14 important question

Answer»
23836.

How many chapters are coming in class 10 social science

Answer»
23837.

The base of an isosceles triangle is 16 cm if it\'s perimeter is 36 cm find the area

Answer» Base=16cmPermiter=36cmLength of two side= 20cmSince it is a isosceles triangle the length of other side is equal.Length of othe side=10cm eachSo by Heron\'s formulaArea of triangle= 48sq cm
23838.

Prove that ( a square +b square )

Answer»
23839.

Find the value(s) of k, if the quadratic equation 3x^2 k±3x4 =0has equal roots.

Answer» \xa0If Discriminant of quadratic equation is equal to zero, or more than zero then roots are real.3x2 -k{tex}\\sqrt3{/tex}x + 4 = 0Compare with ax2 + bx + c = 0then a = 3, -k{tex}\\sqrt3{/tex}\xa0and c = 4D = b2- 4acFor real roots, b2- 4ac > 0{tex}( - k \\sqrt { 3 } ) ^ { 2 } - 4 \\times 3 \\times 4 \\geq 0{/tex}3k2- 48 {tex}\\geq{/tex}0k2\xa0- 16\xa0{tex}\\geq{/tex}0(k - 4)(k + 4) {tex}\\geq{/tex}\xa00{tex}\\therefore{/tex}\xa0k {tex}\\leq{/tex}\xa0- 4 and k{tex}\\geq{/tex}\xa04
23840.

Find the values of k when the quadratic equation is 3x^2-

Answer» \xa0If Discriminant of quadratic equation is equal to zero, or more than zero then roots are real.3x2 -k{tex}\\sqrt3{/tex}x + 4 = 0Compare with ax2 + bx + c = 0then a = 3, -k{tex}\\sqrt3{/tex}\xa0and c = 4D = b2- 4acFor real roots, b2- 4ac > 0{tex}( - k \\sqrt { 3 } ) ^ { 2 } - 4 \\times 3 \\times 4 \\geq 0{/tex}3k2- 48 {tex}\\geq{/tex}0k2\xa0- 16\xa0{tex}\\geq{/tex}0(k - 4)(k + 4) {tex}\\geq{/tex}\xa00{tex}\\therefore{/tex}\xa0k {tex}\\leq{/tex}\xa0- 4 and k{tex}\\geq{/tex}\xa04
23841.

3 is rational

Answer»
23842.

Check whether (20,3),(19,8),(2,-9) are the vertices of a triangle

Answer»
23843.

If tanA=ntanB, sinA=msinB then prove that cos2A=m2 - 1/n2-1

Answer» SinA = m Sin B , Sin A/ Sin B = m and\xa0tan A= n tan B, tan A/tan B= n or Sin A/ cos A/Sin B/cos B= n , SinA Cos B / Cos A. Sin B= nm2\xa0-1/ n2\xa0-1 = (Sin A / Sin B )2\xa0-1/(Sin ACos B /Cos A Sin B)2\xa0-1 = Sin2A/ Sin2B -1/ Sin2ACos2B/Cos2ASin2B -1 = Sin2A-Sin2B/ Sin2B/Sin2ACos2B - Cos2A Sin2B/ Cos2A Sin2B = Sin2A - Sin2B x Cos2A Sin2B/Sin2B (Sin2A Cos2B - Cos2A Sin2B) = Sin2A - Sin2B x Cos2A/ Sin2A(1- sin2B) - (1-Sin2A) Sin2B = (Sin2A - Sin\xa02B ) x Cos2A /Sin2A - Sin2A Sin2B - Sin2B +Sin2A Sin2B = (Sin2A - Sin2B) x Cos2A/ ( Sin2A - Sin2B) = Cos\xa02A
23844.

How to find

Answer»
23845.

Prove that:3cos68°cosec22°-1/2 tan47° tan60° tan78°=6-√3/2

Answer»
23846.

How to solve trigonometry identity ouestion

Answer»
23847.

What is frustum of cone.

Answer»
23848.

5÷0

Answer»
23849.

If 1kg us of 64 rupee so 270 kg will be of how many rupee.?

Answer» 17280 rupee
270 ×64
23850.

R=5 t=2p=1000 si=?

Answer»