Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

23851.

What type of question will come

Answer» Must be tough.Focus more on maths.equations .Attend all questions you will get 1/2 marks for attending.study texts for social.write all equations of all subjects in a chart and stick on your walls.everytime you sees it your memory cathes it.Practise all sample papers.
To the SSLC
23852.

Progressions 2.3

Answer»
23853.

If sin(A+B)=1 and tan(A-B)=1\\1. 73, find the value of (i)tan A+cot B (ii) sec A-cosec B

Answer»
23854.

If cosA =2/5, find the value of 4+4 tan² A

Answer»
23855.

Find the sum of first 100 natural numbers which are neither divisible by 3 nor 6 .

Answer»
23856.

Can you please derive the formula of sine 11A

Answer»
23857.

Determine if the points (1,5),(2,3)and (_2,_11) are collinear.

Answer» Let A {tex}\\rightarrow{/tex} (1, 5)B {tex}\\rightarrow{/tex} (2, 3)C {tex}\\rightarrow{/tex} (-2, -11)Then {tex}AB = \\sqrt {{{(2 - 1)}^2} + {{(3 - 5)}^2}} = \\sqrt {1 + 4} = \\sqrt 5{/tex}{tex}BC = \\sqrt {{{( - 2 - 2)}^2} + {{( - 11 - 3)}^2}}{/tex}{tex}= \\sqrt {{{( - 4)}^2} + {{( - 14)}^2}}{/tex}{tex}= \\sqrt {16 + 196} = \\sqrt {212}{/tex}{tex}CA = \\sqrt {{{[1 - (-2)]}^2} + [5 - {{( - 11)]}^2}}{/tex}{tex}= \\sqrt {{{(3)}^2} + {{(16)}^2}}{/tex}{tex}= \\sqrt {9 + 256} = \\sqrt {265}{/tex}We see thatAB + BC\xa0≠ CABC + CA ≠ ABand CA + AB ≠ BCHence, the given points are not collinear.
23858.

Square root of 4

Answer» 44
2
2
23859.

why be cannot use segment formula inboard exam

Answer» Because it\'s not illustrated in ncert
23860.

The largest number which divides 70 and 125 leaving reminder 5 and 8 is

Answer»
23861.

a quadrilateral ABCD circumscribes a circle AB=6cm BC=8cm CD=15cm find DA

Answer»
23862.

If a and b are the zeroes of the polynomial such that a+b=6

Answer»
23863.

Kunlo pikono che

Answer»
23864.

How many tangent can circle have

Answer» zero tagents\xa0inside a circle andinfinte tangents\xa0outside a circle
Infinite.
23865.

The two sides in a right angled triangle are15cm and20cm each.find its hypotenuse

Answer» as per Pythagorus theoremhp2\xa0=side2\xa0+ side2 = 15^2\xa0+ 20^2 = 225 + 400 = 625hp = 25 cm
Given that:two sides of triangle are Perpendicular(P)=20\xa0cmBase(B)=15cmwe know that:H2=P2+B2H2= 202+152H=25
25
23866.

If 1 and 3 are zeroes of of polynomial x^3-ax^2-13x+b find value pf a and b

Answer» A- 1/5 and B= -69/5
23867.

If sin alpha=n sin beta,tan alpha=m tan beta find cos aplha=m²-1 n²-1

Answer»
23868.

In this year board paper MCQs are include or not

Answer» There will be no any MCQ question... Instead of them one word questions are included...
No
First 2 wiil MCQ
No
23869.

If (x-2)&(x-1/2) are the factors of a polynomials qx² +5x+r prove that q = r

Answer»
23870.

Proobe that the tangents drawn from the external points are equal

Answer» Given: P is an external point to the circle C(O,r).PQ and PR are two tangents from P to the circle.To Prove: PQ = PRConstruction: Join OPProof:{tex}\\because{/tex}\xa0A tangent to a circle is perpendicular to the radius through the point of contact{tex}\\therefore{/tex}{tex}\\angle{/tex}OQP = 90o = {tex}\\angle{/tex}ORPNow in right triangles POQ and POR,OQ = OR [Each radius r]Hypotenuse. OP = Hypotenuse. OP [common]{tex}\\therefore{/tex}{tex}\\triangle{/tex}POQ\xa0{tex}\\cong{/tex}{tex}\\triangle{/tex}POR\xa0[By RHS rule]{tex}\\therefore{/tex} PQ = PR
23871.

What is sin 120°

Answer» I think so it is √3/2
23872.

2÷3

Answer» 0.66666......
23873.

What is a parabora

Answer» Parabola is used to represent quadratic polynomial or the zeroes of quadratic polynomial in graph. It is curve like structure
23874.

The mean of 20 numbers is 18 . If 2 is added to each number , what is the new mean ?

Answer» I think it the new mean is 36
23875.

If two of the zeros of a cubic polynomial are zero then does it have linear and constant terms

Answer»
23876.

Prove that 1+tan^2x/1+cot^2x=(1-tanx/1-cotx)^2

Answer» To prove :\xa0{tex} \\frac{{1 + {{\\tan }^2}\\theta }}{{1 + {{\\cot }^2}\\theta }} = {\\left( {\\frac{{1 - \\tan \\theta }}{{1 - \\cot \\theta }}} \\right)^2}{/tex}Consider : {tex} \\frac{{1 + {{\\tan }^2}\\theta }}{{1 + {{\\cot }^2}\\theta }} = \\frac{{1 + \\frac{{{{\\sin }^2}\\theta }}{{{{\\cos }^2}\\theta }}}}{{1 + \\frac{{{{\\cos }^2}\\theta }}{{{{\\sin }^2}\\theta }}}}=\\frac{{\\frac{{{{\\cos }^2}\\theta + {{\\sin }^2}\\theta }}{{{{\\cos }^2}\\theta }}}}{{\\frac{{{{\\sin }^2}\\theta + {{\\cos }^2}\\theta }}{{{{\\sin }^2}\\theta }}}}{/tex}{tex}= \\frac{{\\frac{1}{{{{\\cos }^2}\\theta }}}}{{\\frac{1}{{{{\\sin }^2}\\theta }}}} = \\frac{{{{\\sin }^2}\\theta }}{{{{\\cos }^2}\\theta }}{/tex}\xa0{tex} \\left[ {\\because {{\\sin }^2}\\theta + {{\\cos }^2}\\theta = 1} \\right]{/tex}{tex}= {\\tan ^2}\\theta {/tex}Consider\xa0{tex} {\\left( {\\frac{{1 - \\tan \\theta }}{{1 - \\cot \\theta }}} \\right)^2} = \\frac{{1 + {{\\tan }^2}\\theta - 2\\tan \\theta }}{{1 + {{\\cot }^2}\\theta - 2\\cot \\theta }}{/tex}{tex}= \\frac{{{{\\sec }^2}\\theta - 2\\tan \\theta }}{{\\cos e{c^2}\\theta - 2\\cot \\theta }}{/tex}\xa0{tex} \\left[ {\\because 1 + {{\\tan }^2}\\theta = {{\\sec }^2}\\theta } \\right]{/tex}{tex}= \\frac{{\\frac{1}{{{{\\cos }^2}\\theta }} - \\frac{{2\\sin \\theta }}{{\\cos \\theta }}}}{{\\frac{1}{{{{\\sin }^2}\\theta }} - \\frac{{2\\cos \\theta }}{{\\sin \\theta }}}} = \\frac{{\\frac{{1 - 2\\sin \\theta \\cos \\theta }}{{{{\\cos }^2}\\theta }}}}{{\\frac{{1 - 2\\sin \\theta \\cdot \\cos \\theta }}{{{{\\sin }^2}\\theta }}}}{/tex}{tex} = \\frac{{{{\\sin }^2}\\theta }}{{{{\\cos }^2}\\theta }} = {\\tan ^2}\\theta {/tex}
23877.

A coin is tossed two times find the probability of getting not more than one head

Answer» 1/2
23878.

Sina+cosa=√2 than evaluate: Tana+cota

Answer»
23879.

Find the sum of all two digit numbers which are either multiple of 2 or 3

Answer»
23880.

Show that 1/7-4root3 is not a rational number

Answer»
23881.

a + a 5 +a 10 + a 15 + a20 +a24=225 Then find out the sum of first 24 terms

Answer»
23882.

Sin a_ cos a=1/2 find 1/sin a + cos a

Answer»
23883.

Use euclid\'s divison (2) 196and38220

Answer»
23884.

Difference between and and or in probability

Answer»
23885.

Can two numbers have 18 as their HCF and 380 is the LCM

Answer» We know that HCF of two numbers is a divisor of their LCM. Here, 18 is not a divisor of 380.But 380 = 18×21+2Here 2 is remainder so 380 is not divisible by 18.So, 18 and 380 cannot be respectively HCF and LCM of two numbers.
23886.

Which chapter have more marks in CBSE board exam

Answer» Trigonometry is important and in statistics more than less then and ogiv is imp
Number system 6 marksAlgebra 20 ma...Coordinate geom... 6 m..Geom.. 15 ma..Trigonometry 12 marksMensuration 10 marksStati..& probability 11 marks
Algebra
23887.

What does co-ordinate mean ? Explain with examples

Answer» You can locate any point on the coordinate plane by an ordered pair of numbers (x,y), called the coordinates.Example :\xa0coordinates\xa0of the origin are (0, 0).
23888.

Weightage of chapters in maths X in board exam

Answer»
23889.

If two vertices of of an equi. triangle are (0,0);(3,0) fimd the third vertex

Answer» (0,3)
23890.

Construct an angle aob =75°. Draw a circle of radius 2.7cm touching the arms of and ob

Answer» So easy
23891.

What\'s about 10 date sheet

Answer»
23892.

What is the common difference of an AP in which T18-T14 ?.

Answer» 4
23893.

Find the centre of a circle passing through the points(6,-6) , (3,-7) and(3,3)

Answer» Let\xa0A → (6, –6), B\xa0→ (3, –7) and C\xa0→ (3, 3).Let the centre of the circle be I(x, y)Then, IA = IB = IC [By definition of a circle]{tex}\\Rightarrow{/tex} IA2 = IB2 = IC2{tex}\\Rightarrow{/tex} (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2Taking first two, we get(x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2{tex}\\Rightarrow{/tex} x2 - 12x + 36 + y2 + 12y + 36 = x2 - 6x + 9 + y2 + 14y + 49{tex}\\Rightarrow{/tex} 6x + 2y = 14{tex}\\Rightarrow{/tex} 3x + y = 7 ......(1) ....[Dividing throughout by 2]Taking last two, we get(x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2{tex}\\Rightarrow{/tex} (y + 7)2 = (y - 3)2{tex}\\Rightarrow{/tex} (y + 7) = {tex}\\pm{/tex}(y-3)taking +e sign, we gety + 7 = y - 3{tex}\\Rightarrow{/tex} 7 = -3which is impossibleTaking -ve sign, we gety + 7 = -(y - 3){tex}\\Rightarrow{/tex} y + 7 = -y + 3{tex}\\Rightarrow{/tex} 2y = -4{tex}\\Rightarrow y = \\frac{{ - 4}}{2} = - 2{/tex}Putting y = -2 in equation (1), we get{tex}\\Rightarrow{/tex} 3x - 2 = 7{tex}\\Rightarrow{/tex} 3x = 9{tex}\\Rightarrow{/tex} x = 3Thus, I {tex}\\rightarrow{/tex} (3, -2)Hence, the centre of the circle is (3, -2).
23894.

What number should be added to the polynomial x2+7x-35 so that 3 is the zero of the polynomial?

Answer» And will be 5.
-5
5
23895.

What is best way to attempt sections in maths board paper ?

Answer» From last
Start in the opp direction- D,C,B then A
23896.

How can we draw three equation in same graph. Please reply

Answer» By adjusting them all
23897.

Draw the graph of the following 2x-3y = -1 and 4x-6y=11Only points and at least three point please

Answer»
23898.

If the sum of n, 2n and 3n terms of an AP be S1, S2 and S3 respectively then prove that S3=3(S2-S1).

Answer» Let a be the first term and d be the common difference of the given AP. Then,S1 = sum of first n terms of the given AP,S2 = sum of first 2n terms of the given AP,S3 = sum of first 3n terms of the given AP.S1 ={tex}\\frac{n}{2}{/tex}{tex}\\cdot{/tex}{2a+(n-1)d}, S2={tex}\\frac{{2n}}{2}{/tex}{tex}\\cdot{/tex}{2a+(2n-1)d}, and S3= {tex}\\frac{{3n}}{2}{/tex}{tex}\\cdot{/tex}{2a+(3n-1)d}{tex}\\Rightarrow{/tex}3(S2-S1) = 3{tex}\\cdot{/tex}[{2na+n(2n - 1)d}\xa0- {na+{tex}\\frac{1}{2}{/tex}n(n-1)d}]= 3{tex}\\cdot{/tex}[na + {tex}\\frac{3}{2}{/tex}n2d-{tex}\\frac{1}{2}{/tex}nd] = {tex}\\frac{{3n}}{2}{/tex}{tex}\\cdot{/tex}[2a+3nd - d]= {tex}\\frac{{3n}}{2}{/tex}{tex}\\cdot{/tex}[2a+(3n-1)d}=S3.Hence, S3=3(S2-S1).
23899.

Can you please tell the marking scheme

Answer»
23900.

Zeros of x2- kx + 6 are in the ratio 3 ratio 2, find k

Answer» K=3