Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24051.

How can I download CBSE latest sample paper

Answer» Check sample papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
24052.

Using Euclid division algorithm , find the hcf of 56,96 and404

Answer»
24053.

Cot=3/5 find the value of other trigonometric ratios

Answer» SinA=5/√34 : CosA=3/√34 : TanA=5/3 : SecA=√34/3 : and CosecA=√34/5 ???????
24054.

What is discriminant?

Answer» The discriminant of a polynomial is a polynomial function of its coefficients, which allows deducing some properties of the roots without computing them.
24055.

Show that there is no positive integer n for which √n-1 +√n+1 is rational

Answer» Let us assume that there is a positive integer n for {tex}\\sqrt{n-1}+\\sqrt{n+1}{/tex}which is rational and equal to {tex}\\frac pq{/tex}, where p and q are positive integers and (q\xa0{tex}\\neq{/tex}\xa00).{tex}\\sqrt { n - 1 } + \\sqrt { n + 1 } = \\frac { p } { q }{/tex}......(i)or,\xa0{tex}\\frac { q } { p } = \\frac { 1 } { \\sqrt { n - 1 } + \\sqrt { n + 1 } }{/tex}on multiplication of numerator and denominator by\xa0{tex}\\sqrt{n-1}-\\sqrt{n+1}{/tex}\xa0we get{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( \\sqrt { n - 1 } + \\sqrt { n + 1 } ) ( \\sqrt { n - 1 } - \\sqrt { n + 1 } ) }{/tex}{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( n - 1 ) - ( n + 1 ) } = \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { - 2 }{/tex}or,\xa0{tex}\\sqrt { n + 1 } - \\sqrt { n - 1 } = \\frac { 2 q } { p }{/tex} ........(ii)On adding (i) and (ii), we get{tex}2 \\sqrt { n + 1 } = \\frac { p } { q } + \\frac { 2 q } { p } = \\frac { p ^ { 2 } + 2 q ^ { 2 } } { p q }{/tex}{tex}\\sqrt{n+1}\\;=\\frac{p^2+2q^2}{2pq}{/tex}...............(iii)From (i) and (ii),{tex}\\style{font-family:Arial}{\\sqrt{n-1}\\;=\\frac{p^2-2q^2}{2pq}}{/tex}........(iv)In RHS of (iii) and (iv)\xa0{tex}\\frac{p^2+2q^2}{2pq}\\;and\\;\\frac{\\displaystyle p^2-2q^2}{\\displaystyle2pq}\\;are\\;rational\\;number\\;because\\;p\\;and\\;q\\;are\\;positive\\;integers{/tex}But it is possible only when (n + 1) and (n - 1) both are perfect squares.Now n+1-(n-1)=n+1-n+1=2Hence they differ by 2 and two perfect squares never differ by 2.So both (n + 1) and (n -1 ) cannot be perfect squares.Hence there is no positive integer n for which\xa0{tex}\\style{font-family:Arial}{\\sqrt{n-1\\;}+\\sqrt{n+1}}{/tex} is rational
24056.

Find the area of ring whose outer and inner radio are 23 and 12 respectively

Answer» 22/7×23+12×23-12
24057.

Write thé areas of thé first qudrant of a circule of radius R.

Answer» 1/4 πr^2
24058.

Sidesof two triangle similrar triangle are n thé ratio 4:9.what are thé ratio of areas of triangles?

Answer» 16:81
24059.

Root of equation x^2+x-p(p+1)=0 where p is constant

Answer»
24060.

Draw a line segment of length 7cm and divide it in the ratio of 2:5measure it\'s two part length?

Answer» 2 5
24061.

SinA-cosA+1/sinA+cosA-1=1/secA-tanA prove LHS=RHS

Answer»
24062.

Example 4 of chapter 8

Answer»
24063.

3 digit no which is divisible by 9 how many term in this ap

Answer» 108 is smallest and 999 is largest three digit number which is divisible by 9 ,so AP is108,117,...….....,999a=108, d=9, a\u200b\u200b\u200b\u200b\u200b\u200bn=999a\u200b\u200b\u200b\u200b\u200b\u200bn=a+(n-1)d999=108+(n-1)9 9( n-1 )=999-108n-1=891/9n-1=99n =99+1n=100There are \'100 \' terms
24064.

If one is zero of 3x^2-4x+p is resiprocal to the others then find the value of p

Answer»
24065.

What is arc

Answer» hj
24066.

If p-cosec=cot,,then show that p-1\\p+1= cos

Answer» Given, cosec θ + cot θ = p...(i)We know that, {tex}cosec^2\\theta-cot^2\\theta=1{/tex}{tex}\\Rightarrow (cosec\\theta+cot\\theta)(cosec\\theta-cot\\theta)=1{/tex}{tex}\\Rightarrow p(cosec\\theta-cot\\theta)=1{/tex}{tex}\\Rightarrow cosec\\theta-cot\\theta=\\frac 1p{/tex}\xa0....(ii)Adding i and ii, we get{tex}2cosec\\theta=p+ \\frac 1p{/tex}{tex}cosec\\theta=\\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow sin\\theta= \\frac{1}{cosec\\theta}=\\frac{2p}{p^2+1}{/tex}We know that,{tex}cos\\theta=\\sqrt{1-sin^2\\theta}=\\sqrt{1- \\frac{4p^2}{(p^2+1)^2}}=\\sqrt{\\frac{p^4+1-2p^2}{(p^2+1)^2}}{/tex}{tex}cos\\theta=\\sqrt{\\frac{(p^2-1)^2}{(p^2+1)^2}}=\\frac{p^2-1}{p^2+1} {/tex}
24067.

If sin+cos=√3,then prove that tan+cot=1

Answer»
24068.

If the pth term of an AP is q and the qth term is p, show that rth term is p+q-r

Answer» Its very lengthy
24069.

In AN ap: Sum of firme 10 terme is -150 and sum of its next 10 termin is - 550. Fino AP.

Answer» According to the question,the sum of first 10 terms of an AP is -150 and the sum of its next 10 terms is -550Let a be the first term and d be the common difference of the given AP.Then, we haveS10=-150{tex}\\Rightarrow \\frac { 10 } { 2 } [ 2 a + 9 d ] = - 150{/tex}{tex}\\Rightarrow{/tex}5[2a+9d]=-150{tex}\\Rightarrow{/tex}2a+9d=-30...(i)Clearly, the sum of first 20 terms =-150+(-550)=-700{tex}\\therefore{/tex}S20=-700{tex}\\Rightarrow \\frac { 20 } { 2 } [ 2 a + 19 d ] = - 700{/tex}{tex}\\Rightarrow{/tex}10[2a+19d]=-700{tex}\\Rightarrow{/tex}2a+19d=-70...(iii)Subtracting (i) from (ii), we get10d=-40{tex}\\Rightarrow{/tex}d=-4{tex}\\Rightarrow{/tex}2a=-30-9(-4)=-30+36=6{tex}\\Rightarrow{/tex}a=3Thus, we have\xa0First term=a=3Second term= a+d=3+2(-4)=-1Third term=a+2d=3+2(-4)=3-8=-5Fourth term=a+3d=3+3(-4)=3-12=-9Thus, the given AP is 3,-1,-5,-9,....
24070.

If sina+sinb+sinc=3and0< a, b, c

Answer»
24071.

Appropriate method

Answer»
24072.

If P(x,y)is equidistant from the points A(7,-2) and B(3,1), express y in terms of x.

Answer»
24073.

If i fail in one subject than i pramote or not????

Answer»
24074.

If sin a+cos =root2 then find the value of tan a+cot a

Answer»
24075.

(42}74

Answer» 3108 is the answer.
24076.

9^x+2-9^x=240

Answer» 9(x+2)-9x=2409x (92-1)=2409x (81-1)=2409x (80)=2409x =332x=32x=1x=0.5\xa0
24077.

H.c.f.

Answer» Highest common factor is the ans.
Highest common factor
24078.

If sin theta =8 cos theta , then find the value of 1+sin theta /1-cos theta ×cot theta

Answer»
24079.

How u can prove 0=1

Answer»
24080.

A copper diameter is 1cm and length is 8cm drawn into a wire 18cm. Find its diameter

Answer»
24081.

Determine the ratio in which the 27x+9y-8=0 divide the line segment into (1,3)and(2,7).

Answer» You answer yourself?
3/4
24082.

9/6

Answer» 9/6 = 3/2 = 1.5
3/2 i. e 1.5
24083.

Wright a relation between 2 and 3

Answer» There are many relation such as--1. 2 is the presecessor of 3.2. 3 is the succeasor of 2.3. 2 and 3 are natural, prime, whole and positive integers.4. 2+1=35. 3-1=2Or kisi ko pta h to vo b btade..
24084.

√p is an irrational number

Answer» Yes
Yes
24085.

What is the greatest number amongst 2 1/2,3 1/3,8 1/8and9 1/9

Answer» 91/9
81/8
24086.

Sum of supplymentry angle

Answer» 360
180
90°
24087.

I want maths marking scheme of class 10 ?

Answer» You can check the marking scheme in the syllabus :\xa0https://mycbseguide.com/cbse-syllabus.html
24088.

The height of a cone is 10 cm . The cone is divide into 2 parts

Answer» Let the radius of original cone be r2Radius of\xa0cut of cone be r1According to the questionHeight of the original\xa0cone = 10 cm (given)The cone is cut off from the midpoint of the height,therefore, height the cone cut off = 5 cm{tex}\\Delta A O C \\sim \\Delta A\' O\' C{/tex}OA = Radius of original cone = r2O\'A\' = Radius of cutoff cone = r1Ratio\xa0of radius of two cones = Ratio of the height of cones{tex}\\therefore \\quad \\frac { A O } { A\' O ^ { \\prime } } = \\frac { r _ { 2 } } { r _ { 1 } } = \\frac { 10 } { 5 }{/tex}{tex}\\Rightarrow \\quad r _ { 2 } = 2 r _ { 1 }{/tex}Radius of original cone = 2 (radius of the cut off cone)Volume of the cut off cone\xa0{tex}= \\frac { 1 } { 3 } \\pi r _ { 1 } ^ { 2 } \\times 5{/tex}{tex}= \\frac { 5 } { 3 } \\pi r _ { 1 } ^ { 2 }{/tex}\xa0cubic\xa0unitsVolume of original cone\xa0{tex}= \\frac { 1 } { 3 } \\pi \\left( 2 r _ { 1 } \\right) ^ { 2 } \\times 10{/tex}{tex}= \\frac { 40 } { 3 } \\pi r _ { 1 } ^ { 2 }{/tex}\xa0cubic\xa0unitsVolume of frustum = Volume of an original cone - Volume of cut off cone{tex}= \\frac { 40 } { 3 } \\pi r _ { 1 } ^ { 2 } - \\frac { 5 } { 3 } \\pi r _ { 1 } ^ { 2 }{/tex}{tex}= \\frac { 35 } { 3 } \\pi r _ { 1 } ^ { 2 }{/tex}\xa0cubic\xa0unitsRequired ratio = Volume of frustum: Volume of cut off cone{tex}= \\frac { 35 \\pi r _ { 1 } ^ { 2 } } { 5 \\pi r _ { 1 } ^ { 2 } } = \\frac { 7 } { 1 }{/tex}Therefore, the required ratio\xa0= 7: 1.
24089.

Is 68 a term of the ap 7 ,10 ,13 ,....?

Answer» No
24090.

Trigonometry ratio

Answer» sin ,cos, tan ,cosec ,sec ,cot are the trigonometric ratios.
Sin, cos, tan, cosec, sec, cot are the trigonometric ratios
24091.

A circle touches all four sides of a quadrilateral abcd with ab =6 cm bc=7cm and cd =4cm find ad

Answer» Given,\xa0a circle touches all the four sides of a quadrilateral ABCD whose sides are AB = 6 cm, BC = 9 cm and CD = 8 cm.\xa0If a circle touches all the four sides of quadrilateral ABCD, then\xa0AB + CD = AD + BC{tex}\\therefore{/tex}\xa06 + 8 = AD + 9\xa0{tex}\\Rightarrow{/tex}\xa014 = AD + 9{tex}\\Rightarrow{/tex}\xa014-9 = AD{tex}\\Rightarrow{/tex}\xa0AD = 5 cm
24092.

Teroram of triangle

Answer»
24093.

The number (17)to the power 2001 is divided by 7 than what will be the possible remainder.

Answer»
24094.

Trigonometry formula

Answer» Service enable
24095.

Find the value of k if the quadratic equation 3x square -k root 3x +4=0 has equal roots

Answer» K = +- 4
24096.

The angle of elevation is 60°on site of tower find the height of tower on the ground level is 10m.

Answer» Tan Q=p/b, tan 60=p/10 root 3 =p/10 10×root 3=p p=10 root 3 it\'s a answer
10 underroot 3m
Tan30° = √3 Let the height be h so h/10 = √3 & h= 10√3 m
24097.

Divide a line segment of length 11 cm in the ratio of 2:5 internally

Answer»
24098.

In a circle the radius is 4 CM. Find circumference.

Answer» 2×3.14×4=25.12 cm
25.14cm
24099.

When to apply total surface area and lateral surface area?

Answer»
24100.

How to find the square root of 12.25

Answer» First find the square root of 1225 and the divide it by the square root of 100 (point ke baad do digit h) .The answer will be 35 .Got it!