Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 24151. |
How to draw a line parallel to a line |
|
Answer» ------------------------------------------ ____________________________________________ |
|
| 24152. |
5x-6x-2=0 |
|
Answer» x=-2 ??? X=-2 x=-2 |
|
| 24153. |
solution for ncertbook math class 10solutions |
| Answer» Check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html | |
| 24154. |
Find the area of circle whose cirumference is 8pi |
|
Answer» circumference = 2πr2πr= 8 π2r= 8r=8/2=4\xa0Area =\xa0{tex}πr^2{/tex}A=\xa0{tex}π(4)^2{/tex}A= 16 16pi ans |
|
| 24155. |
any example of atlest and atmost probability |
| Answer» At least 0Atmost 1 | |
| 24156. |
7+7-7%7+7= |
| Answer» 20 | |
| 24157. |
Find the distance between the points A(a cos 35,0) B(0,a cos 55) |
| Answer» Distance between the points P(x1, y1) and Q(x2, y2) is given by PQ =\xa0{tex}\\sqrt { \\left( x _ { 2 } - x _ { 1 } \\right) ^ { 2 } + \\left( y _ { 2 } - y _ { 1 } \\right) ^ { 2 } }{/tex}{tex}\\therefore{/tex}\xa0Distance between {tex}\\left( 0 , a \\cos 55 ^ { \\circ } \\right){/tex} and {tex}\\left( a \\cos 35 ^ { \\circ } , 0 \\right){/tex}{tex}= \\sqrt { \\left( a \\cos 35 ^ { \\circ } - 0 \\right) ^ { 2 } + \\left( 0 - a \\cos 55 ^ { \\circ } \\right) ^ { 2 } }{/tex}{tex}= \\sqrt { \\left( a \\cos 35 ^ { \\circ } \\right) ^ { 2 } + \\left( - a \\cos 55 ^ { \\circ } \\right) ^ { 2 } }{/tex}{tex}= \\sqrt { a ^ { 2 } \\cos ^ { 2 } 35 ^ { \\circ } + a ^ { 2 } \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= \\sqrt { a ^ { 2 } \\left( \\cos ^ { 2 } 35 ^ { \\circ } + \\cos ^ { 2 } 55 ^ { \\circ } \\right) }{/tex}{tex}= a \\sqrt { \\cos ^ { 2 } \\left( 90 ^ { \\circ } - 55 ^ { \\circ } \\right) + \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= a \\sqrt { \\sin ^ { 2 } 55 ^ { \\circ } + \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= a \\sqrt { 1 }{/tex}{tex}= a{/tex}\xa0units. | |
| 24158. |
Ex-12. 2. Q. 12 |
| Answer» Q.12 To warn ships for underwater rocks a lighthouse spreads a red coloured light over a sector of angle 80º to a distance of 16.5 km. Find the area of the sea over which the ships are warned. (Use \\pi = 3.14)Sol. Area of the sea over which the ships are warned = Area of the sector (having r = 16.5 km and \\theta = {80^o}) = {\\theta \\over {360}} \\times \\pi {r^2} = \\left( {{{80} \\over {360}} \\times 3.14 \\times 16.5 \\times 16.5} \\right)sq.\\,km = {{68389.2} \\over {360}}sq.km = 189.97\\,k{m^2} | |
| 24159. |
Find the value of a ,b and c such that a ,7,b,23,c are in AP |
| Answer» a=-1,b=15,c=31 | |
| 24160. |
(a+b) square - (a-b) square =4ab how does it happen |
|
Answer» (a+b)^2-(a-b)^2=a^2+b^2+2ab-(a^2+b^2-2ab)=a^2+b^2+2ab-a^2-b^2+2ab=4ab (a+b)2^-(a+b)^2=a^2+b^2+2ab-(a^2+b^2-2ab)=a^2+b^2+2ab-a^2-b^2+2ab=2ab+2ab=4abHence proved Open bracket s of LHS using identity |
|
| 24161. |
In an Ap , the sum of frist n term is 3n^2/2+13n/2 . Find the 25th term |
| Answer» {tex}S_n = \\frac { 3 n ^ { 2 } } { 2 } + \\frac { 13 n } { 2 }{/tex}{tex}{ \\mathrm { S } _ { n } = \\frac { 3 n ^ { 2 } + 13 n } { 2 } }{/tex}an\xa0= Sn\xa0- Sn-1or, a25\xa0= S25\xa0- S24{tex}= \\frac { 3 ( 25 ) ^ { 2 } + 13 ( 25 ) } { 2 } - \\frac { 3 ( 24 ) ^ { 2 } + 13 ( 24 ) } { 2 }{/tex}=\xa0{tex}\\frac 12{/tex}[3(252\xa0- 242)\xa0+13(25 - 24)]= {tex}\\frac { 1 } { 2 } {/tex}[3 (625 - 576) + 13 (1)]=\xa0{tex}\\frac { 1 } { 2 } ( 3 \\times 49 + 13 ){/tex}= {tex}\\frac { 1 } { 2 } ( 147 + 13 ){/tex}= {tex}\\frac { 1 } { 2 } ( 160 ){/tex}= 80 | |
| 24162. |
Find the area of the triangle formed by joining the mid point of the sides |
| Answer» Let A → (0, -1), B → (2, 1) and C→ (0, 3) be the vertices of the triangle ABC. Let D, E and F be the mid-points of sides BC, CA and AB respectively. Then,\xa0{tex}D \\to \\left( {\\frac{{2 + 0}}{2},\\frac{{1 + 3}}{2}} \\right){/tex}{tex} \\Rightarrow D \\to \\left( {1,2} \\right){/tex}{tex}E \\to \\left\\{ {\\frac{{0 + 0}}{2},\\frac{{3 + ( - 1)}}{2}} \\right\\}{/tex}{tex}\\Rightarrow E \\to (0,1){/tex}{tex}F \\to \\left\\{ {\\frac{{2 + 0}}{2},\\frac{{1 + ( - 1)}}{2}} \\right\\}{/tex}{tex}\\Rightarrow F \\to (1,0){/tex}{tex}\\therefore{/tex} Area of the triangle DEF{tex}= \\frac{1}{2}{/tex}[1(1 -\xa00) + 0(0 -\xa02) + 1(2 - 1)]{tex}= \\frac{1}{2}{/tex}[1 + 0 + 1]= 1 square unit.Again, area of the triangle ABC{tex}= \\frac{1}{2}{/tex}[0(1 -\xa03) + 2 {3 -\xa0(-1)} + 0(-1 -1)]= 4 square units{tex}\\therefore{/tex} Ratio of the area of the triangle formed to the area of the given triangle = 1 : 4 | |
| 24163. |
How many proved questions are come in maths paper? |
| Answer» | |
| 24164. |
State and prove Pythagoras theorm |
| Answer» | |
| 24165. |
What is HCF?And how to find HCF??? |
|
Answer» The Highest Comman Factor of two or more numbers is the largest number that divides evenly into both number Hcf isverry simple qutions |
|
| 24166. |
What is composite number? |
|
Answer» Which has more than two factors not 2...u have written wrong... Which has a two or more than two factors is called composite number. Which has factor more than 2 |
|
| 24167. |
Determine whether the given values are solution of equation or not x2+√2x-4=0,X=√2,X=-2√2 |
|
Answer» Yes these values are the solution of given equation Yes these r the solutions of the eqn... Yes |
|
| 24168. |
How to find a in mean formula in step deviation method when xi is even |
| Answer» | |
| 24169. |
What\'s about ur clan and ur name i n coc |
| Answer» | |
| 24170. |
Some application of trignometry |
| Answer» | |
| 24171. |
Find the length of median of triangle ABC from a whose A(3,5) B(4,1) C(2,3). |
| Answer» | |
| 24172. |
How many two digit numbers are divisable by 3 ? (First pre boards question no.1 section A) |
|
Answer» AP: 12,15.........99Here a=99; d=3; an=l=99an=a+(n-1)×d99=12+(n-1)×3n=30 Ans -33 Answer is 30 but I am not able to understand how it came 99is divided by 3 is two digit number 33 answer |
|
| 24173. |
What is value of -+ sin0 |
| Answer» | |
| 24174. |
A farmer has 12 cow all but 9die? How many cow did he left |
|
Answer» 12 - 9 = 3 3 |
|
| 24175. |
The sum of the first n terms of an Ap is given by Sn=3nsquare-n.find its (1)nth term |
| Answer» 2 | |
| 24176. |
2x+3x |
|
Answer» 5x 5X |
|
| 24177. |
P( a+b ,a-b) and q( a-b,a+b ) |
| Answer» PQ = root (a-b-a-b)^2 + (a + b - a + b)^2root(-2b)^2 + (2b)^2root4b^2 + 4b^2root 8b^22root2 b | |
| 24178. |
Show that only one of the number x, x+2 and x+4 is divisibility by 3 |
| Answer» Divide x,x+2and x+4 with three but make the m in order | |
| 24179. |
Board exam |
| Answer» | |
| 24180. |
Do the points (3,2),(-2,-3)and(2,3) form a triangle? |
| Answer» | |
| 24181. |
For what value of K(-7) is a zero of poly. 2xsq.+11x+(6x+3) |
| Answer» | |
| 24182. |
Plzz someone explain me circles chapter I m very weak in it |
| Answer» Nancy. Bisauli se | |
| 24183. |
Prove that 1+cosa+sins/1-cosa+sina=1+sina/cosa |
| Answer» | |
| 24184. |
What is the central value of the data |
| Answer» Median | |
| 24185. |
I want to know the date of board exam 10th time table |
| Answer» | |
| 24186. |
Name of 6.7 theorem of chapter triangles |
| Answer» No particular name given to it | |
| 24187. |
What is the name of theorem 6.7 of maths chapter 6 triangles. |
| Answer» The sum of angles are triangles are 180 degree. | |
| 24188. |
The area of a circular playground is 22176 cm square find the cost of fencing at rate RS50 PER METRE |
| Answer» Fencing is made on circumference (2πr) of circular field. So, we require radius for it.Area of the circular playground = 22176 m2⇒ πr2 = 22176⇒ {tex}\\frac { 22 } { 7 } r ^ { 2 }{/tex}\xa0= 22176⇒ r2 = {tex}\\frac { 7 \\times 22176 } { 22 }{/tex}\xa0⇒ r2 = {tex}\\sqrt { 7 \\times 1008 }{/tex}⇒ r = {tex}\\sqrt { 7 \\times 7 \\times 3 \\times 3 \\times 2 \\times 2 \\times 2 \\times 2 }{/tex}⇒ r = 7 × 3 × 2 × 2⇒ r = 84 m∴ Length of fencing = Circumference of circle= 2πr = 2 × {tex}\\frac { 22 } { 7 }{/tex}× 84 = 24 × 22 mSo, Cost of fencing = 50 × 24 × 22 = 26400Hence, cost of fencing = Rs 26400. | |
| 24189. |
What type of questions will come in maths second pre boards just the pattern of questions |
| Answer» Just like final board paper. Check out the sample papers for it | |
| 24190. |
How does the mathematical theoram are motivated? |
| Answer» | |
| 24191. |
Is paper of mathematics will come is easy or hard |
| Answer» It is being easiest,if you are ready to give exam | |
| 24192. |
Show that in a right triangle the square of the hypotenuse is equal to the other two sides |
| Answer» PGT | |
| 24193. |
What is circel |
| Answer» First correct the spelling. Circle is combination of infinite piont which is equidistant from a fixed point. | |
| 24194. |
To. 63+8438+54324876+3764094== |
| Answer» 58097471 | |
| 24195. |
Ex 2.1 , Question 2 |
| Answer» | |
| 24196. |
Ex 12.2 q:no 8 |
| Answer» | |
| 24197. |
What is the formula to find the coordinate of centroid of triangle |
|
Answer» x1+x2+x3/3 In triangle ABC,Let coordinates of centroid be x and yAnd A (x1 ,y1) ,B (x2, y2) , C(x3 , y3)formula isx=1/3× ( x1+ x2+ x3)y=1/3× ( y1+y2+y3) |
|
| 24198. |
If sinQ = cosQ then fond the value of 2tan×tanQ + sin×sinQ - 1 |
| Answer» No | |
| 24199. |
If 3 sinA+5cosA=5,proove that 5 sinA-3cosA=+-3 |
| Answer» | |
| 24200. |
Solution of exercise 19B rs agarwal math |
| Answer» | |