Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24551.

What is cos a

Answer» Cos a is equal to base upon hypotenuse
24552.

In the following APs find the missing term in the box 2 , , 26

Answer» 14
24553.

A die is thrown.Probability of prime number

Answer» 3/6
24554.

Value of root 3

Answer» 1.73
24555.

The difference between the circumference and diameter of circle is 135cm find radius

Answer» 31.5
24556.

Free sample paper

Answer» Check Sample Papers here :\xa0https://mycbseguide.com/cbse-sample-papers.html
24557.

How many terms of the A.P 9,17,25,......must be tak3n to give a sum of 636

Answer» a=9 d=4 Sn=636 n=?Sn=n/2(2a+(n-1)d)636=n/2(18+(n-1)4)636*2=n(18+4n-4)1272=n(14+4n)1272=14n+4n*n4n square+14n-1272=0Now solve this by splitting the middle term
24558.

hubham

Answer»
24559.

Is it true that some questions will come in options in exam of class 10

Answer» Yes for sure..??
24560.

Proving of a^3+b^3+c^-3abc

Answer»
24561.

Find volume of cylinder radius is 3cm n height is 4cm

Answer» Radius=3cmHeight=4cmVolume of cylinder=pie.r^2.hVolume=3.14×3×3×4Volume=113.04cm^3
24562.

(X-1)(X-2)=(X-3)(x+1)

Answer»
24563.

Please give me 10th cbse board exam 2017 18 datesheet

Answer» Check datesheet here :\xa0https://mycbseguide.com/cbse-datesheet.html
24564.

What is degree of polynomials?

Answer» The highest power of. Variable is known as degree of polynomial
24565.

CBSE syllabus and marks

Answer» Full syllabus except SST because in SST there is choice between chapters and it is of total 80 marks
24566.

prove that the diagonal of a rectangle bisect each other are equal.

Answer» Let ABCD be a rectangle. Taking A as origin, the vertices of a rectangle are A(0, 0), B(a, 0), C(a, b) and D(0, b).\xa0Diagonal {tex}AC = \\sqrt {{{(a - 0)}^2} + {{(b - 0)}^2}} = \\sqrt {{a^2} + {b^2}} {/tex}Diagonal {tex}DB = \\sqrt {{{(a - 0)}^2} + {{(b - 0)}^2}} = \\sqrt {{a^2} + {b^2}} {/tex}{tex}\\therefore \\;AC = DB\\;\\left[ {\\because \\;{\\text{Each}}\\,\\sqrt {{a^2} + {b^2}} } \\right]{/tex}Mid-point of {tex}AC = \\left( {\\frac{{0 + a}}{2},\\frac{{0 + b}}{2}} \\right) = \\left( {\\frac{a}{2},\\frac{b}{2}} \\right){/tex}Mid-point of {tex}BD = \\left( {\\frac{{a + 0}}{2},\\frac{{0 + b}}{2}} \\right) = \\left( {\\frac{a}{2},\\frac{b}{2}} \\right){/tex}{tex}\\Rightarrow{/tex}\xa0Mid-point of AC = Mid-point of BD{tex}\\Rightarrow{/tex}\xa0Mid-point of AC and BD is same{tex}\\Rightarrow{/tex}\xa0AC and BD bisect each other.Hence the diagonals of a rectangles bisect each other and are equal proved.
24567.

If n\'th of an ap i n and m\'th of an ap is n prove that (m+n)=0

Answer» mam = nanm[a + (m - 1)d] = n [a + (n - 1)d]{tex} \\Rightarrow {/tex}\xa0ma + m2d - md = na + n2d - nd{tex} \\Rightarrow {/tex}\xa0a(m - n) + (m2 - n2)d - md + nd = 0{tex} \\Rightarrow {/tex}\xa0a(m - n) + (m - n) (m + n)d - (m - n)d = 0{tex} \\Rightarrow {/tex}\xa0(m - n) [a + (m + n - 1)d] = 0{tex} \\Rightarrow {/tex}\xa0a + (m + n - 1)d = 0{tex} \\Rightarrow {/tex}\xa0am+n = 0Hence proved.
24568.

Find the distance between the points ( a cos 35° ,0) and ( 0,a cos55°)

Answer» Distance between the points P(x1, y1) and Q(x2, y2) is given by PQ =\xa0{tex}\\sqrt { \\left( x _ { 2 } - x _ { 1 } \\right) ^ { 2 } + \\left( y _ { 2 } - y _ { 1 } \\right) ^ { 2 } }{/tex}{tex}\\therefore{/tex}\xa0Distance between {tex}\\left( 0 , a \\cos 55 ^ { \\circ } \\right){/tex} and {tex}\\left( a \\cos 35 ^ { \\circ } , 0 \\right){/tex}{tex}= \\sqrt { \\left( a \\cos 35 ^ { \\circ } - 0 \\right) ^ { 2 } + \\left( 0 - a \\cos 55 ^ { \\circ } \\right) ^ { 2 } }{/tex}{tex}= \\sqrt { \\left( a \\cos 35 ^ { \\circ } \\right) ^ { 2 } + \\left( - a \\cos 55 ^ { \\circ } \\right) ^ { 2 } }{/tex}{tex}= \\sqrt { a ^ { 2 } \\cos ^ { 2 } 35 ^ { \\circ } + a ^ { 2 } \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= \\sqrt { a ^ { 2 } \\left( \\cos ^ { 2 } 35 ^ { \\circ } + \\cos ^ { 2 } 55 ^ { \\circ } \\right) }{/tex}{tex}= a \\sqrt { \\cos ^ { 2 } \\left( 90 ^ { \\circ } - 55 ^ { \\circ } \\right) + \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= a \\sqrt { \\sin ^ { 2 } 55 ^ { \\circ } + \\cos ^ { 2 } 55 ^ { \\circ } }{/tex}{tex}= a \\sqrt { 1 }{/tex}{tex}= a{/tex}\xa0units.
24569.

2x+3x-1

Answer»
24570.

Two tangent PA and PB are drawn to circle such that angle APB=30Deegre .prove that OP=2AP

Answer» In {tex}\\triangle{/tex}AOP and {tex}\\triangle{/tex}BOP, we have,{tex}\\angle OAP = \\angle OBP = 90^\\circ{/tex}OP = OP [Common]PA = PB [{tex}\\because{/tex} Tangents from an external point are equal in length]So, by RHS congruence criterion, we have{tex}\\triangle AOP \\cong \\triangle BOP{/tex}{tex}\\therefore \\angle APO = \\angle BPO{/tex} [By C.P.C.T.]{tex}\\Rightarrow \\angle APO = \\angle BPO = \\frac{1}{2}\\angle APB{/tex}{tex} = \\frac{1}{2} \\times 120^\\circ{/tex}= 60°{tex} \\Rightarrow \\angle APO = \\angle BPO = 60^\\circ {/tex}In {tex}\\triangle{/tex}OAP, we have{tex}\\cos 60^\\circ = \\frac{{AP}}{{OP}}{/tex}{tex} \\Rightarrow \\frac{1}{2} = \\frac{{AP}}{{OP}}{/tex}{tex}\\Rightarrow{/tex} OP = 2APHence proved.
24571.

Is there any change in question of board exam 2017-18 because system is changed ??

Answer»
24572.

When we download this app so why to buy sample paper to solve

Answer»
24573.

In a triangle ABC is DE||BC,AE=8cm and BC=6cm, then find DE

Answer»
24574.

4+4-4×4

Answer» -8
24575.

X square + X + 1 find the root of this equation

Answer» No real roots are there in given equation
24576.

How I do construction ???

Answer»
24577.

Is 10th class datesheet upload?

Answer» Check datesheet here :\xa0https://mycbseguide.com/cbse-datesheet.html
24578.

αβ

Answer»
24579.

What is A.P.

Answer» Arithmetic progression
24580.

In AP chapter formula of Sn=

Answer» n/2{2a+(n-1)d}
What do you want to convey by writing this?
Pvdjjdhhsjehhkshejz
24581.

When frequency is not given and mode is given how can we get the median class

Answer»
24582.

Class interval.

Answer»
24583.

if AB is tangent and APQ is secant then prove that AB2=AQ*AP

Answer»
24584.

In a right circular cone ,the cross section made by the plane parallel to its base is a

Answer» The vertex of a\xa0cone\xa0(the point, the apex) is not in the same\xa0plane\xa0as the\xa0base. Allcross sections\xa0of a\xa0cone parallel to the base\xa0will be similar to the\xa0base. ... If the segments joining the center of the circle\xa0base\xa0and vertex point is perpendicular to the\xa0base, the\xa0cone\xa0is a\xa0right circular cone.
24585.

MM.graph for the equation x square plus x plus one equal zero

Answer»
24586.

Vol. of cude formula

Answer» lbh
L×B×H
24587.

Did all the questions in board exam will be from the qiven topics in my cbse quide for class 10

Answer»
24588.

How to draw triangle of side 7,6and5 and ratio is 3:5

Answer»
24589.

find HCF 196,32880

Answer» Ncert question
Silly question
24590.

The perimeter of a sector of a circle of radius 5.3cm is 16.4cm . Find the area of the sector

Answer» let POQ is the sector, radius of circle =5.3PO+QO+arcQP=16.4\xa05.3+5.3+arc PQ=16.4l=arc pq=5.8area of sector POQ =1/2 X L X r = 1/2 x 5.8 x 5.3 = 15.37 cm2
24591.

Prove that cos\\ 1-sin = sec +tan

Answer»
24592.

2or 2

Answer»
24593.

Prove that the tangents drawn at the ends of a diameter of a circle are parallel

Answer» They are parallel because diameter is perpendicular to the tangent as of 90 ° they are parallel H.P
24594.

When y= 2 , and y=1/2 ,where y=4power x ,then what is the value of x

Answer»
24595.

Find the ratio in which the joining of points (-3,10) and (6,-8) is divided by the points (-1,6).

Answer» Let A →\xa0(–3, 10), B → (6, –8) and P → (–1, 6)Let P divide AB in the ratio K: 1.{tex}P \\to \\left\\{ {\\frac{{(K)(6) + (1)( - 3)}}{{K + 1}},\\frac{{(K)( - 8) + (1)(10)}}{{K + 1}}} \\right\\}{/tex}or {tex}P \\to \\left( {\\frac{{6K - 3}}{{K + 1}},\\frac{{ - 8K + 10}}{{K + 1}}} \\right){/tex}But P {tex}\\rightarrow{/tex} (-1, 6){tex}\\therefore \\;\\frac{{6K - 3}}{{K + 1}} = - 1{/tex}{tex}\\Rightarrow{/tex} 6K - 3 = -K - 1{tex}\\Rightarrow{/tex} 7K = 2\xa0{tex}\\Rightarrow K = \\frac{2}{7}{/tex}and {tex}\\frac{{ - 8K + 10}}{{K + 1}} = 6{/tex}{tex}\\Rightarrow{/tex} -8k + 10 = 6K + 6{tex}\\Rightarrow{/tex} 14K = 4{tex}\\Rightarrow K = \\frac{4}{{14}} = \\frac{2}{7}{/tex}
24596.

Fgg

Answer»
24597.

Ab - Ab

Answer» 0
24598.

5-4

Answer» Great question???
1?
24599.

the perimeter of a rectangle feild is 130m and area is 1000m2 find dimension

Answer» on solving its dimension would come 40cm and 25 cm
24600.

Prove tan1.tan2.tan3............tan89=1

Answer» tan1.tan(90-1).tan2.tan(90-2).....tan45tan1.cot1.tan2.cot2.tan45= 1