Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24601.

Illiana you are what type of girl.are you good or beautiful girl

Answer» Heyy yash she is not a girl first of all and changes her name daily today her name is bajarang can u relly believe her I think u should not..???
Give me answer
24602.

If the circumference of a circle exceeds it\'s diameter by 16.8 cm what is diameter of circle

Answer» Let, radius of the circle = r cmAccording to questionCircumference - Diameter = 16.8 cm{tex}\\Rightarrow 2\\pi r - 2r = 16.8{/tex}{tex}\\Rightarrow 2 \\times \\frac{{22}}{7} \\times r - 2r = 16.8{/tex}{tex}\\Rightarrow \\frac{{44r - 14r}}{7} = 16.8{/tex}{tex} \\Rightarrow \\frac{{30r}}{7} = 16.8{/tex}{tex} \\Rightarrow r = \\frac{{16.8 \\times 7}}{{30}} = \\frac{{117.6}}{{30}} = 3.92cm{/tex}{tex}\\therefore {/tex}\xa0Diameter of circle\xa0= 2r= 2 x 3.92 = 7.84 cm
24603.

If sin^2A =2sinA find the value of A

Answer»
24604.

2 2. 2(a+b). = a. + 2ab+b. 2Then what is the answer of (√7+√9)

Answer»
24605.

How to construct a more than ogive graph

Answer»
24606.

Chapter no. 14 exercise 14.1 question no. 8 solved by the step divation method

Answer»
24607.

X3-6x2+11x-6 find the roots

Answer» The given polynomial f(x)={tex}\\text{x}^3-\\text{6x}^2+\\text{11x-6}{/tex}Since 3 is a zero of p(x), so (x - 3) is a factor of f(x).On dividing f(x) by (x - 3), we get{tex}\\therefore{/tex}\xa0f(x) = (x2\xa0- 3x + 2)(x - 3)= ( x2\xa0- 2x - x + 2)( x - 3)= [x(x - 2) -1(x - 2)](x - 3)= (x - 1)(x - 2)(x - 3)Now f(x)=0 if x - 1 = 0 or x - 2 = 0 or x - 3 = 0{tex}\\Rightarrow{/tex}\xa0x = 1 or x = 2 or x = 3{tex}\\mathrm{Hence}\\;\\mathrm{the}\\;\\mathrm{remainig}\\;\\mathrm{roots}\\;\\;\\mathrm{of}\\;\\mathrm f(\\mathrm x)\\;\\mathrm{are}\\;1\\;\\mathrm{and}\\;2\\;{/tex}
24608.

If the number a,9,b,25form an so, a and b

Answer»
24609.

CosA -sinA + 1/cosA +sinA -1 = cosecA + cot A

Answer» I can solve it.....but cant type the solution on this becoz solution is large......so how can i help u miss...
24610.

ANTHE ka result kya aaya

Answer»
24611.

Is there any AAA congruency criterion for triangles

Answer» Yes
24612.

How to find perimeter of circle?

Answer» 2πr
Answer is the circumference in equals to the perimeter in circle?????
24613.

If sec0 + tan0 =7 then sec0-tan 0=?

Answer»
24614.

8 to the power x=5 to the power y=40 to the power 6. What is the value of x+y/xy

Answer»
24615.

Find roots 2x+7

Answer» X= - 7/2
24616.

Chapter 10(Circles) of Xth class theorem 10.1 & 10.2

Answer»
24617.

Show that 6 n cannot end with the digit 0 or 5 for any natural number N

Answer» If any number ends with the digit 0, it should be divisible by 10 or in other words, it will also be divisible by 2 and 5 as 10 = 2 × 5Prime factorisation of 6n = (2 ×3)nIt can be observed that 5 is not in the prime factorisation of 6n.Hence, for any value of n, 6n will not be divisible by 5.Therefore, 6n cannot end with the digit 0 or 5 for any natural number n.
24618.

12+14-3

Answer» 23
23
24619.

The sum of two no. Is 11and the sum of their reciprocal 1/2 find the no.

Answer» let two nos are x and yx+y=11x=11-y ...... i1/x + 1/y=1/2x+y/xy=1/22(x+y)=xyfrom i2(11-y+y)=xy22=xy.......... iix=22/y11-y=22/y11y -y2=22y2-11y+22=0\xa0
Its answer IS (11+ \\/33)÷2••••••(i)(11-\\/33)÷2••••••••(ii) OK TRY
X+Y=111/X+1/y=1/2Equate
24620.

Hi guys. What thing u find in girls.

Answer»
24621.

A-b= bIs it possible.give reason or example for ur answer

Answer» Yes it\'s possible.If A=2 & b=1Then, A-b= 2-1=1I.e A-b=b=1
24622.

If radius of cylinder is 25cm and height is 20cm .find surface area of cylinder.

Answer»
24623.

Blue print marks wise all 30 questions

Answer»
24624.

A-b =c

Answer»
24625.

How many terms of ap 18,16,14 taken so that there sum is 0.

Answer» As Sn=1/2(2a+(n-1)d) So, 0=1/2(2(18)+(n-1)(-2)) 0=36+(n-1)(-2) -36=(n-1)(-2) -36/-2=(n-1) 18=n-1 18+1=n n=19
24626.

What is the probability that a leap

Answer» We have to find the probability that a leap year has 53 Tuesdays and 53 Mondays.We know that, a leap year has 365 days which means 52 complete weeks and 2 days.Therefore,if 52 weeks end in Mon, then 2 days will be = Tue, WedIf 52 weeks end in Tue, then 2 days will be = Wed, ThuIf 52 weeks end in Wed, then 2 days will be = Thu, FriIf 52 weeks end in Thu, then 2 days will be = Fri, SatIf 52 weeks end in Fri, then 2 days will be = Sat, SunIf 52 weeks end in Sat, then 2 days will be = Sun, Monif 52 weeks end in Sun, then 2 days will be = Mon, TueTherefore,Total number of outcomes = 7Also,number of cases favourable to the event = 1Therefore,required probability that a leap year has 53 Sundays and 53 Mondays =\xa0{tex}\\frac{1}{7}{/tex}
24627.

How much marks will be come from ncert book in maths paper of board exam ?

Answer» May be 30%
24628.

To prove root 3 is a irrational number

Answer» \xa0let us assume that\xa0{tex}\\sqrt 3{/tex}\xa0be a rational number.{tex}\\sqrt { 3 } = \\frac { a } { b }{/tex}, where a and b are integers and co-primes and b{tex} \\neq{/tex}0Squaring both sides, we have{tex}\\frac { a ^ { 2 } } { b ^ { 2 } } = 3{/tex}or,\xa0{tex}a ^ { 2 } = 3 b ^ { 2 }{/tex}--------(i)a2\xa0is divisible by 3.Hence a is divisible by 3..........(ii)Let a = 3c ( where c is any integer)squaring on both sides we get(3c)2\xa0= 3b29c2\xa0= 3b2b2\xa0= 3c2so b2\xa0is divisible by 3hence, b is divisible by 3..........(iii)From equation(ii) and (iii), we have3 is a factor of a and b which is contradicting the fact that a and b are co-primes.Thus, our assumption that\xa0{tex}\\sqrt 3{/tex} is rational number is wrong.Hence,\xa0{tex}\\sqrt 3{/tex}\xa0is an irrational number.
24629.

In a circle of centre o and r =5cm Ab is a third of length 5√3cm . Find the area of the sector AOB

Answer» It is given that AB = 5{tex}\\sqrt3{/tex}\xa0cm.{tex}\\Rightarrow \\quad A L = B L = \\frac { 5 \\sqrt { 3 } } { 2 } \\mathrm { cm }{/tex}Let\xa0{tex}\\angle {AOB}=2\\theta{/tex} . Then,\xa0{tex}\\angle A O L = \\angle B O L = \\theta{/tex}In\xa0{tex}\\triangle{/tex}OLA, we have{tex}\\sin \\theta = \\frac { A L } { O A } = \\frac { \\frac { 5 \\sqrt { 3 } } { 2 } } { 5 } = \\frac { \\sqrt { 3 } } { 2 }{/tex}{tex}\\Rightarrow \\quad \\theta = 60 ^ { \\circ }{/tex}{tex}\\Rightarrow \\quad \\angle A O B = 120 ^ { \\circ }{/tex}{tex}\\therefore{/tex}Area of sector AOB =\xa0{tex}\\frac { 120 } { 360 } \\times \\pi \\times 5 ^ { 2 } \\mathrm { cm } ^ { 2 } = \\frac { 25 \\pi } { 3 } \\mathrm { cm } ^ { 2 }{/tex}
24630.

What is perimeter of circle

Answer» 2. Pie .r(radius)
24631.

Show that the sequence defined by an=3n2- 5 is not an A.P.

Answer»
24632.

If a sin θ+ b cos θ = c then prove that a cos θ - b sin θ =Г a2 + b2-c2

Answer» We have, {tex}asin\\theta+bcos\\theta=c{/tex}On squaring both sides, we get{tex}(asin\\theta+bcos\\theta)^2=c^2{/tex}(a sin θ)2\xa0+ (b cos θ)2\xa0+ 2(a sin θ) (b cos θ) = c2⇒ a2\xa0sin2\xa0θ + b2\xa0cos2\xa0θ + 2ab sin θ cos θ = c2⇒ a2(1 – cos2\xa0θ) + b2\xa0(1 – sin2\xa0θ) + 2 ab sin θ cos θ = c2 {tex}[\\because sin^2\\theta+cos^2\\theta=1]{/tex}⇒ a2\xa0– a2\xa0cos2\xa0θ + b2\xa0– b2\xa0sin2\xa0θ + 2ab sin θ cos θ = c2⇒ –a2\xa0cos2\xa0θ – b2\xa0sin2\xa0θ + 2ab sin θ cos θ = c2\xa0– a2\xa0– b2 Taking Negative common,⇒ a2\xa0cos2\xa0θ + b2\xa0sin2\xa0θ – 2ab sin θ cos θ = a2\xa0+ b2\xa0– c2⇒ (a cos θ)2\xa0+ (b sin θ)2\xa0– 2(a cos θ) (b sin θ) = a2\xa0+ b2\xa0– c2⇒ {tex}(acos\\theta-bsin\\theta)^2=a^2+b^2-c^2{/tex}⇒{tex}acos\\theta-bsin\\theta{/tex} =\xa0{tex}\\pm \\sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } }{/tex}\xa0Hence proved, {tex}acos\\theta-bsin\\theta{/tex} =\xa0{tex}\\sqrt{a^2+b^2-c^2}{/tex}
24633.

Why astica called zero

Answer»
24634.

2+5_6+6/7

Answer» And its a silly question
24635.

if x=1 is a common root of quadratic equations ax2+ax+3=0and x2+x+b=0,then find ab.

Answer»
24636.

If x=y thenz=?

Answer» Answer is v
24637.

2+4+6+8+10+12+14+16+18+20

Answer» Great question?
24638.

What is value of x0

Answer» 0
24639.

How we can download the videos from my cbse app

Answer»
24640.

CosecQ + CotQ = x then CosecQ +CotQ =?

Answer»
24641.

Find k questions

Answer»
24642.

Root3

Answer» 1.732
24643.

what is the sum of 2 3 4 5 6 if they are in AP

Answer» 20
20
24644.

Show that 5-_/3 is irrational where _/3 is an irrational number

Answer» We will solve this by contradiction method i.e.,\xa0Assume\xa0{tex}5 - \\sqrt { 3 } = \\frac { p } { q }{/tex}\xa0be a rational number.{tex}\\therefore 5 - \\frac { p } { q } = \\sqrt { 3 }{/tex}\xa0or\xa0{tex}\\frac { 5 q - p } { q } = \\sqrt { 3 }{/tex},Since p,q are integers, therefore\xa0{tex}\\frac { 5 q - p } { q }{/tex} is a rational number, which is a contradiction,since\xa0{tex}\\sqrt 3{/tex} is an irrational number.Therefore, our supposition is wrong and hence, 5 - {tex}\\sqrt 3{/tex}\xa0is irrational.
24645.

4s square -4s+1

Answer» g(s)=4s2 - 4s + 1Here, a = 4, b = -4 and c = 1We have, 4s2 - 4s + 1= 4s2 - 2s - 2s + 1= 2s\xa0(2s\xa0− 1) − 1 (2s\xa0− 1)= (2s\xa0− 1) (2s\xa0− 1)g(s) =0 if 2s-1=0\xa0Hence\xa0{tex}\\text{s=}\\frac12\\text{,}\\frac12{/tex}Sum of zeroes\xa0{tex}\\text{=}\\frac12+\\frac12=1\\operatorname{=-}\\frac{-4}4=-\\frac{\\mathrm b}{\\mathrm a}=-\\frac{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s}{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s^2}{/tex}{tex}{/tex}Product of Zeroes= {tex}\\frac12\\text{×}\\frac12=\\frac14=\\frac{\\mathrm c}{\\mathrm a}=\\frac{\\mathrm{constant}\\;\\mathrm{term}}{\\mathrm{coefficient}\\;\\mathrm{of}\\;\\mathrm s^2}{/tex}
24646.

5x+5

Answer» 25
24647.

X-3/5+x-4/7=6-2x-1/35

Answer»
24648.

x+a/b+c + x+b/c+a +x+c/a+b +3 =0 a>0 b>a c>0 then x is equal to

Answer»
24649.

Cot sqaure theta -1 by sin square theta =-1 (prove)

Answer»
24650.

How √2 irrational & ranation

Answer»