Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24651.

37,511,713...????

Answer» Answer:- 985
24652.

Rd sharma ex10.2 que 29

Answer»
24653.

How many irrational no. lie between √2 & √3 ?

Answer» Infinity irrational no.between _/2&_/3
24654.

1+1+1+1×0×1+1

Answer» 5 by BODMAS
4BODMAS rule
4
0
4
24655.

What is the root of 6859565556554555556xh

Answer»
24656.

what is polynomiyal

Answer»
24657.

10:26::50:x find the value of x and its option are 142 ; 122 ; 132 ; 112 ?

Answer» 10/26 =50/xx=50x26/10 = 130
24658.

How many question arises of 1 number or mcq

Answer» There are no McQ in exam pattern
24659.

Ntse

Answer» Ntse means national talent search examination
24660.

What is whole number

Answer» The numbers which starts from 0 to infinity
24661.

name the types of quadrilateral is any by the following points and give reason for your answer

Answer»
24662.

2÷x

Answer»
24663.

Difference between a quadrant and a minor sector

Answer» A sector of is called a minor sector if the minor arc of the circle is apart of its boundary while quadrant of a circle is one fourth part of the circle.
24664.

Sin120

Answer»
24665.

Triangle ABC similar Triangle PQR & AB:BC: AC =3:5:6 then Triangle PQR perimeter is 19.6 then QR=

Answer» QR=7
24666.

Sin 90

Answer» 1
1.
1
24667.

If the zeros of a polynomial x square-7x+k are such that alpha - beta=1 then find the value of k

Answer» X sq. 7x+kAlpha=-b/a=7Beta=c/a=kIt is given that alpha-beta=1So,7-k=1-K=-6K=6
I need the answers with steps
K=7
24668.

Section formula

Answer» The section formula tells us the coordinates of the point which divides a given line segment into two parts such that their lengths are in the ratio m:n. ... The section formula is helpful in coordinate geometry; for instance, it can be used to find out the centroid, incenter and excenters of a triangle.
24669.

What is alternate swgment theorem

Answer» Alternate segment theorem. The angle between the tangent and chord at the point of contact is equal to the angle in the alternate segment. This is the circle property that is the most difficult to spot.
24670.

Friends.. had you fill the form of ntse?

Answer» Yes I had filled.
Yes I have filled
24671.

Which term of AP :12,18,15,...is zero?

Answer» That to i also confused...
Hmm
Plz do check ur question... Bcz if it is saying the following no. Are in a. P then they should have common difference.. Which is not coming...
24672.

What kind of questions are given in board exam

Answer» Cool. All que comes from our book ,almost
24673.

If A,B,C are interior angles of triangle.prove that B+C½=cos A½

Answer» \xa0A, B, C, are interior angles of a\xa0{tex}\\Delta {/tex}{tex}\\because A + B + C = 180 ^ { 0 }{/tex}{tex}\\Rightarrow B + C = 180 ^ { 0 } - A \\Rightarrow \\frac { B + C } { 2 } = 90 ^ { 0 } - \\frac { A } { 2 }{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\sin \\left( 90 ^ { \\circ } - \\frac { \\mathrm { A } } { 2 } \\right) \\left[ \\because \\sin \\left( 90 ^ { 0 } - \\theta \\right) = \\cos \\theta \\right]{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\cos \\frac { \\mathrm { A } } { 2 } \\text { proved }{/tex}LHS = RHS
24674.

12-45

Answer» -33
24675.

If (X)(X)(X)+(X)(X)-ax+b is divisible by (X)(X)-x find the value of a+b

Answer» Since f(x) =\xa0x3\xa0+ x2\xa0- ax + b is divisible by (x2\xa0- x), we havex2\xa0- x = 0{tex}\\Rightarrow{/tex}\xa0x(x - 1) = 0{tex}\\Rightarrow{/tex}\xa0x = 0 or x = 1Hence,f(0) = 0{tex}\\Rightarrow{/tex} x3\xa0+ x2\xa0- ax + b = 0{tex}\\Rightarrow{/tex}\xa003\xa0+ 02\xa0- a(0) + b = 0{tex}\\Rightarrow{/tex}\xa0b = 0Also,f(1) = 0{tex}\\Rightarrow{/tex} x3\xa0+ x2\xa0- ax + b = 0{tex}\\Rightarrow{/tex}\xa013\xa0+ 12\xa0- a(1) + 0 = 0{tex}\\Rightarrow{/tex}\xa01 + 1 - a = 0{tex}\\Rightarrow{/tex} 2 - a = 0{tex}\\Rightarrow{/tex}\xa0a = 2Hence , the value of a and b in given polynomial are a = 2 and b = 0.
24676.

Completion of square method

Answer» The given equation is: 7x2\xa0+ 3x - 4 = 0 Multiply each term by 7, we obtain: 49x2\xa0+ 21x - 28 = 0{tex}\\Rightarrow{/tex}\xa049x2\xa0+ 21x = -28On adding\xa0{tex}\\left( \\frac { 3 } { 2 } \\right) ^ { 2 }{/tex} on both sides, we get (7x)2\xa0+ 2\xa0{tex}\\times{/tex}\xa07x\xa0{tex}\\times \\frac { 3 } { 2 } + \\left( \\frac { 3 } { 2 } \\right) ^ { 2 } = 28 + \\left( \\frac { 3 } { 2 } \\right) ^ { 2 }{/tex}\xa0{tex}\\Rightarrow \\left( 7 x + \\frac { 3 } { 2 } \\right) ^ { 2 } = 28 + \\frac { 9 } { 4 }{/tex}{tex}\\Rightarrow \\left( 7 x + \\frac { 3 } { 2 } \\right) ^ { 2 } = \\frac { 121 } { 4 }{/tex}{tex}\\Rightarrow 7 x + \\frac { 3 } { 2 } = \\pm \\frac { 11 } { 2 }{/tex}Therefore, either 7x =\xa0{tex}- \\frac { 3 } { 2 } - \\frac { 11 } { 2 }{/tex}\xa0or 7x =\xa0{tex}- \\frac { 3 } { 2 } + \\frac { 11 } { 2 }{/tex}{tex}\\Rightarrow{/tex}\xa07x = -7 or 7x = 4{tex}\\Rightarrow{/tex}\xa0x = -1 or x =\xa0{tex}\\frac { 4 } { 7 }{/tex}Hence, the roots of given equation are {tex}\\frac { 4 } { 7 }{/tex} and\xa0-1.
24677.

Find the value of cot 10 cot 30 cot 30?

Answer» = cot 10° cot 30° cot 80°= cot (90° - 80°) cot 30° cot 80°{tex}[\\because cot(90^o-\\theta)=tan\\theta]{/tex}{tex}=tan80^o. cot30^o{/tex}.{tex}\\frac { 1 } { \\tan 80 ^ { \\circ } }{/tex}{tex}[\\because cot\\theta=\\frac{1}{tan\\theta}]{/tex}{tex}=cot30^o{/tex}\xa0{tex}=\\sqrt{3}{/tex}Therefore,\xa0{tex}cot10^o cot30^o cot80^o=\\sqrt{3}{/tex}{tex}{/tex}
24678.

What is the debat

Answer» Debate is contention in argument; strife, dissension, quarrelling, controversy; especially a formal discussion of subjects before a public assembly or legislature, in Parliament or in any deliberative assembly.
24679.

How to prove pythagoras theorm

Answer»
24680.

Form a quadratic equation whos roots are 7+√5 and 7-√5

Answer» x²-14x+44
24681.

Maths ko kese padi jaye easy way me

Answer»
24682.

Maths ko jaldi kese samje

Answer» Revised the math
Learning?? Maths learn kon krta hai
by improving your learning and thinking skill......
24683.

Derivation of formulae (a^2 +b^2)

Answer»
24684.

What is composite number

Answer» Number having more than two factor.
24685.

Which book I should do or sample paper only

Answer» Sorry I mean exams are in March.
I think you should go for previous year questions papers first.... then opt for sample paper only before one month of exam.. I hope exams are in November.. So study till January. Ncert only.. Then in February u can go for sample paper
I think sample papers
24686.

Hi can you send three square formula of trigonometry ratio

Answer»
24687.

Solve :-3x+9y= 0

Answer»
24688.

90+60

Answer» 150
24689.

solve (x-3)(x-4)=34/√1089 by factorisation method

Answer»
24690.

Co ordinate

Answer»
24691.

Cordinate

Answer»
24692.

How find is n in AParis chapter

Answer» {tex}s=\\;\\frac n2\\;\\left[2a\\left(n-1\\right)d\\right]{/tex}
24693.

Solve:bx+ay=a+bax (1/a-b-1/a+b) +by (1/b-a -1/b+a)=2a/a+b

Answer» The system of equation is given by :bx + cy = a + b ......(i){tex}ax\\left( {\\frac{1}{{a - b}} - \\frac{1}{{a + b}}} \\right) + cy\\left( {\\frac{1}{{b - a}} + \\frac{1}{{b + a}}} \\right){/tex}{tex}= \\frac{{2a}}{{a + b}}{/tex}\xa0...(ii)From equation (i)bx + cy - (a + b) = 0 ............ (iii)From equation (ii){tex} ax\\left( {\\frac{1}{{a - b}} - \\frac{1}{{a + b}}} \\right) + cy\\left( {\\frac{1}{{b - a}} + \\frac{1}{{b + a}}} \\right){/tex}\xa0{tex} - \\frac{{2a}}{{a + b}} = 0{/tex}{tex}⇒ x\\left( {\\frac{{2ab}}{{(a - b)(a + b)}}} \\right) + y\\left( {\\frac{{2ac}}{{(b - a)(b + a)}}} \\right){/tex}\xa0{tex}- \\frac{{2a}}{{a + b}} = 0{/tex}{tex} ⇒ \\frac{1}{{a + b}}\\left( {\\frac{{2abx}}{{a - b}} - \\frac{{2acy}}{{a - b}} - 2a} \\right) = 0{/tex}\xa0{tex}⇒ \\frac{{2abx}}{{a - b}} - \\frac{{2acy}}{{a - b}} - 2a = 0{/tex} 2abx - 2acy - 2a(a - b) = 0 ....(iv)From equation (iii) and (iv), we geta1 = b, b1 = c and c1 = - (a + b)and a2 = 2ab , b2 = -2ac and c3 = -2a(a - b)by cross-multiplication, we get{tex}\\frac{x}{{ - 4{a^2}c}} = \\frac{{ - y}}{{4a{b^2}}} = \\frac{{ - 1}}{{4abc}}{/tex}Now, {tex}\\frac{x}{{ - 4{a^2}c}} = \\frac{{ - 1}}{{4abc}} {/tex}{tex}⇒ x = \\frac{a}{b}{/tex}And, {tex}\\frac{{ - y}}{{4a{b^2}}} = \\frac{{ - 1}}{{4abc}} {/tex}{tex}⇒ y = \\frac{b}{c}{/tex}The solution of the system of equation are {tex}\\frac{a}{b}{/tex}\xa0and {tex}\\frac{b}{c}{/tex}.
24694.

If pth term of ap is q and qth term of ap is p then prove that R is equal to p+q-r

Answer»
24695.

What is the distance between the points (a,b)and(-a,b).

Answer» 2a units
24696.

Decimal expansion of the rational number 47/2×2×25×2

Answer» 2350
24697.

Cube volume

Answer» Side cube
24698.

Volume of cube

Answer» Side cube
a3
24699.

π×27×27

Answer» 2290.2 if pie is taken as 22\\7 2289.6 if pie is taken as 3.14
24700.

Ripu singh

Answer»