Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24701.

How we calculate rational no between underroot 3and underroot5

Answer»
24702.

Decimation of composite no.

Answer» Haha ?? so funny
You fool you don\'t even what are composite numbers.And if you don\'t know you could have searched it\'s definition on Google why are you wasting your time here.
24703.

Can we use only direct method for finding mean ?

Answer» If the question have class mark than applyassumed and step deviation method and when class mark is not given then use direct method
ask teacher
Sorry its A+ sigma fidi /sigma fi Step deviation method is= A +sigma fidi /sigma fi × hi
Assumed method=A+ sigma Didi/ sigma fi
No there is specific formulas for finding mean that is step deviation method, assumed method
Grouped or ungrouped?
24704.

Find the largest number which divide 70 anh 125 leaving remainder 5 anh 8 respectively

Answer» First subtract and then take the HCF
24705.

In triangle ABC , angle B=90° AB = 3 CM , SIN C = 1/ 2 find AC.

Answer» A.c. =6cm
24706.

Why 1×1

Answer»
24707.

2 circles touch externally at P and AB is a common tangent to the circles . Find angle APB

Answer» Given X and Y are two circles touch each other externally at P. AB is the common tangent to the circles X and Y at point A and B respectively.To find :\xa0{tex}\\angle APB{/tex}Solution : {tex}let\\ \\angle CAP = \\alpha \\ and\\ \\angle CBP = \\beta{/tex}CA = CP [lengths of the tangents from an external point C]In\xa0{tex} \\triangle PAC, \\angle CAP = \\angle APC = \\alpha{/tex}{tex}Similarly \\ CB = CP \\ and \\ \\angle CPB = \\angle PBC = \\beta {/tex}Now in the triangle APB,{tex}\\angle PAB + \\angle PBA + \\angle APB = 180° {/tex} [sum of the interior angles in a triangle]{tex}\\alpha + \\beta + (\\alpha + \\beta ) = 180°{/tex}{tex}=> 2\\alpha + 2\\beta = 180°{/tex}{tex}=> \\alpha + \\beta = 90°{/tex}{tex}\\therefore \\angle APB = \\alpha + \\beta = 90°{/tex}
24708.

How to prove sin2A+cos2A=1

Answer»
24709.

2 multiply 2 =4 or 2+2=4 and 3+3=6 but 3 multiply 3 = ,9 why

Answer»
24710.

Prove root 5 in irrational

Answer» Assume that √5 is irrational.:. √5=p/qThen, √5q=p. , which is rational..So our assumption is wrong..√5 is irrational.
24711.

Why clouds are white in color - human eye and colourful world

Answer» Becz they r big enough to scatter all wavelenght of visible light so mixture of all wavelent or 7 clour to produce combine effect i.e white colour so they r white.
24712.

What is lemma

Answer» Lemma is a proven statement used for proving another statement. Eg: If a and b are two positive integers such that their exists two unique integers q and r which satisfies the relation a = bq + r ,where 0 ≤ r < b.
24713.

If the piont (A,B),(A\',B\'),(A-A\',B-B\') are collner then prove that AB\'=A\'B

Answer»
24714.

Two questions of ogive?

Answer»
24715.

35÷x × y÷13 =12 find the value of x and y and the value of x_y

Answer»
24716.

What is abacus

Answer» An abacus is a manual aid to calculating that consists of beads or disks that can be moved up and down on a series of sticks or strings within a usually wooden frame. The abacus itself doesn\'t calculate; it\'s simply a device for helping a human being to calculate by remembering what has been counted.
24717.

Show the sample paper of 1pre board

Answer» Check sample papers here :https://mycbseguide.com/cbse-sample-papers.html
24718.

How will I get model question paper of 2018 board?

Answer» CBSE.nic.in
24719.

How to implement trigonometric identities in given questions?

Answer»
24720.

A2 plus b2??

Answer» B1
24721.

Area of cone

Answer» Area of cone =\xa0{tex}\\pi r \\left( r + \\sqrt { h ^ { 2 } + r ^ { 2 } } \\right){/tex},where r is radius of circular part of cone,and h is height of the cone
24722.

Prove Euclid division lemma with example

Answer»
24723.

Find the sum of the first 25 terms of an AP, in which the third term is 7 and seventh term is 23

Answer» a3=a+2d=7...............ia7=a+6d=23..................iifrom i and ii- 4d=-16d=4a= -1a25=-1+96a25=95S25=25/2(2a+24d) =25(-1+48) =25x47 =1175
1175
And : 1175
1225
3725/7
24724.

Find the value of tan 60 degrees geometrically

Answer» Let\xa0{tex}\\triangle{/tex}ABC\xa0is an equilateral A with each side = 2a units. Draw\xa0{tex}\\mathrm { AD } \\perp \\mathrm { BC }{/tex}{tex}\\therefore{/tex}\xa0D is mid-point of BC{tex}\\Rightarrow{/tex}\xa0BD = aIn right\xa0{tex}\\triangle{/tex}ADBAB2 = BD2 + AD2{tex}\\Rightarrow{/tex}\xa0(2a)2 = a2 + AD2{tex}\\Rightarrow{/tex}\xa04a2 - a2 = AD2{tex}\\Rightarrow{/tex}\xa0AD =\xa0{tex}\\sqrt { 3 a ^ { 2 } } = \\sqrt { 3 } a{/tex}Now in right\xa0{tex}\\triangle{/tex}ADBtan B\xa0{tex}= \\frac { \\mathrm { AD } } { \\mathrm { BD } }{/tex}{tex}\\Rightarrow{/tex}\xa0tan\xa0{tex}60 ^ { \\circ } = \\frac { \\sqrt { 3 } a } { a }{/tex}\xa0{tex}\\left( \\because \\angle B = 60 ^ { \\circ } \\right){/tex}{tex}\\Rightarrow{/tex}\xa0tan\xa0{tex}60 ^ { \\circ } = \\sqrt { 3 }{/tex}\xa0
24725.

By cross multiplication method solve bx/a+ay/b=a2b2 and x+y=2ab

Answer» The given pair of equations are:{tex}\\frac{b}{a}x + \\frac{a}{b}y = {a^2} + {b^2} {/tex}So,\xa0{tex}\\frac{b}{a}x + \\frac{a}{b}y -[ {a^2} + {b^2} ] = 0{/tex} ...................(i)And x + y = 2abx + y - 2ab = 0 ....................(ii)Here,{tex}{a_1} = \\frac{b}{a},{b_1} = \\frac{a}{b}{/tex}, c1 = -(a2 + b2)a2 = 1, b2 = 1, c2 = -(2ab)By cross-multiplication method{tex}\\begin{array}{l}\\;\\frac x{{\\displaystyle\\frac ab}\\times-(2ab)\\;-1\\lbrack-(a^2\\;+\\;b^2)\\rbrack}=\\;\\frac y{-(a^2\\;+\\;b^2)\\;-{\\displaystyle\\frac ba}\\lbrack\\;-(2ab)\\rbrack}=\\;\\frac1{{\\displaystyle\\frac ba}-{\\displaystyle\\frac ab}}\\\\\\frac x{\\displaystyle\\frac{-2a^2b}b\\;\\;+(a^2\\;+\\;b^2)}=\\;\\frac y{-(a^2\\;+\\;b^2)\\;+{\\displaystyle\\frac{2ab^2}a}}=\\;\\frac1{\\displaystyle\\frac{b^2\\;-\\;a^2}{ab}\\;}\\\\\\end{array}{/tex}{tex} \\frac{x}{{{\\frac ba - \\frac ab} }} = \\frac{{ - y}}{{ - {b^2} + {a^2}}} = \\frac{1}{{\\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}{tex} \\frac{x}{{{b^2} - {a^2}}} = \\frac{{ - y}}{{ - {b^2} + {a^2}}} = \\frac{1}{{\\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}{tex} \\frac{x}{{{b^2} - {a^2}}} = \\frac{1}{{\\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}{tex}⇒ x = ab{/tex}And, {tex}\\frac{{ - y}}{{ - {b^2} + {a^2}}} = \\frac{1}{{\\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}{tex}⇒ y = ab{/tex}The solutions of the given pair of equations is x= ab and y = ab .
24726.

For no solution (2p-1)x+(p-1)y=2p+1&y+3x+1=0

Answer» For (2p - 1)x + (p - 1 )y - (2p + 1) = 0{tex}a _ { 1 } = 2 p - 1 , b _ { 1 } = p - 1 \\text { and } c _ { 1 } = - ( 2 p + 1 ){/tex}and for\xa03x + y - 1 = 0{tex}a _ { 2 } = 3 , b _ { 2 } = 1 \\text { and } c _ { 2 } = - 1{/tex}The condition for no solution is{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}{tex}\\frac { 2 p - 1 } { 3 } = \\frac { p - 1 } { 1 } \\neq \\frac { 2 p + 1 } { 1 }{/tex}By\xa0{tex}\\frac { 2 p - 1 } { 3 } = \\frac { p - 1 } { 1 }{/tex}3/7-3 = 2 /7 -13/7 - 2/7 = 3 - 1{tex}\\therefore {/tex}\xa0p = 1from\xa0{tex}\\frac { p - 1 } { 1 } \\neq 2 p + 1{/tex}We have\xa0{tex}p - 1 \\neq 2 p + 1 \\text { or } 2 p - p = - 1 - 1{/tex}{tex}p \\neq - 2{/tex}from\xa0{tex}\\frac{{2p - 1}}{3} \\ne \\frac{{2p + 1}}{1}{/tex}{tex}\\Rightarrow \\quad 2 p - 1 \\neq 6 p + 3{/tex}{tex} \\Rightarrow \\quad 4p \\ne - 4{/tex}{tex}p \\neq - 1{/tex}
24727.

Class 10 on chapter 8

Answer»
24728.

Which one is better-arihant or oswaal for sample question papers of all subjects ??

Answer» Arihant is better as it provides answers in easy way to learn and understand.
oswaal is better hope it helps you
So you prefer which book?
Dont used these books
I think oswaal
24729.

find the value of theta,if costheta/1-sintheta+costheta/1+sintheta=4,theta

Answer» 60
24730.

find the area of a triangle with vertices (0,4)(0,0)and (3,0)

Answer» 6 units
24731.

Co-interior angles proper defination.

Answer» In any parallel line the sum of co-interior angle ks180
24732.

Find your number in AP whose sum is 28 and the sum of whose square is 216

Answer» Let the required number be (a - 3d), (a - d), (a + d) and (a + 3d)Sum of these numbers = (a - 3d) + (a - d)+ (a + d) + (a + 3d)According to the question, sum of the numbers=28{tex}\\therefore{/tex}4a = 28\xa0{tex}\\Rightarrow{/tex}\xa0a = 7Sum of the squares of these numbers=(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=4(a2+5d{tex}^2{/tex})Now, sum of the squares of numbers=216{tex}\\therefore{/tex}4(a2+5d2)=216{tex}\\Rightarrow{/tex}a2+5d2=54 [{tex}\\because {/tex}a=7]{tex}\\Rightarrow{/tex}5d2= 54-49{tex}\\Rightarrow{/tex}5d2=5{tex}\\Rightarrow{/tex}d2=1{tex}\\Rightarrow{/tex}d={tex} \\pm {/tex}1Hence, the required numbers (4, 6, 8, 10).
24733.

Class 10th. Embankment question

Answer»
24734.

Find all odd no.between 0 to 50

Answer» 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49
24735.

if the product of hcf and lcm of two natural numbers is 378000, then find hcf

Answer»
24736.

Tangent

Answer» A tangent is a line that touches a circle at one point and at one point only. It always is perpendicular to any radius drawn to the point of tangency
24737.

Cosecα_cotα=1/4 then find the value of cosecα+cotα

Answer» Ans : 4
24738.

If sinA+sin2A=1,find the value of cos12A+3cos10A+3cos8A+cos6A+2cos4A+2cos2A-2

Answer»
24739.

Find the common difference of the ap5,10,15......

Answer»
24740.

Chapter wise marking scheme for final examination

Answer» Check marking scheme in syllabus :\xa0https://mycbseguide.com/cbse-syllabus.html
24741.

A driver try to start a car the probability of the event is

Answer»
24742.

Is all paper is come from ncert book or not???

Answer» Any more tell me ???
No it is not sure
90℅ of the ques. Is come from ncert book only and other will come from out side of course.
24743.

In triangle ABC, EF parallel AB and area (ABC) = area(EFBA) ,then find the ratio of CF and EA

Answer»
24744.

2+2×3÷5

Answer» Ans. Is 3.2
So sorry little child right answer is 3.5
Little child answer is 4????
3.2
24745.

If 9th term of an AP is zero;prove that its 29th term is double the 19th term

Answer» We have,a9\xa0= 0{tex}\\Rightarrow{/tex}\xa0a + (9 - 1)d = 0{tex}\\Rightarrow{/tex}\xa0a + 8d = 0{tex}\\Rightarrow{/tex}\xa0a = -8dTo prove: a29 = 2a19Proof:LHS = a29= a + (29 - 1)d= a + 28d= -8d + 28d= 20dRHS = 2a19= 2 a + (19 - 1)d]= 2[ -8d + 18d]= 2\xa0{tex}\\times{/tex}10d= 20d{tex}\\therefore{/tex} LHS = RHSHence, 29th\xa0term is double the 19th term.
24746.

2564+465444

Answer» 468008
24747.

What is the use of trigonometry in future??????

Answer» Nothing ..
24748.

Sin^2 A /1-cotA +cos^3A/cosA-sinA

Answer»
24749.

Explain complete squaring method

Answer» The method of converting a quadratic equation which is not perfectsquare into the sum or difference of a perfect squareand constant by adding or subtracting the suitable perfect square
24750.

What is the sum of all interior angles of a star ★

Answer» 540
540