Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 24901. |
If 5 cot theta 1/4 then find (5sin theta -3cos theta)/(5sin theta+2costheta) |
| Answer» | |
| 24902. |
a+b+c=0, a2+b2+c2=1, prove a2b2c2 ( |
| Answer» | |
| 24903. |
a+b+c=0, a2+b2+c3=1, prove a2b2c2 ( |
| Answer» | |
| 24904. |
If pth,qth,rth ofan ap is a,b,c show (a-b)r+(b-c)p+(c-a)q=0 |
| Answer» A + (p - 1)D = a ......(i)A + (q - 1)D = b ....... (ii)A + (r - 1)D = c .......(iii)(ii) - (iii)b - c = (q - 1)D - (r - 1)D{tex} \\Rightarrow {/tex}\xa0b - c = D(q - r){tex} \\Rightarrow {/tex}\xa0p(b - c) = p D(q - r) ...... (iv)Similarly,q(c - a) = q D(r - p) ...... (v)r(a - b) = rD (p - q) ...... (vi)Adding (iv), (v) and (vi)p(b-c) + q(c - a) + r(a - b) = 0 | |
| 24905. |
20+5 |
| Answer» 25 | |
| 24906. |
Tell algebraic equation |
| Answer» | |
| 24907. |
If sum of first n term of an ap is 3n+2n then find sum of 16th term |
| Answer» Sn=3n+2n thus S16=3*16+2*16=48+32=80ans. | |
| 24908. |
App Page so all so so so so so should tzitzit |
| Answer» | |
| 24909. |
Sum of zeroes is |
|
Answer» Alpha + beta i,e -b/a -b/a Alpha or beta X |
|
| 24910. |
Define TRIGNOMETRY and when was discovered |
|
Answer» It is not appivable to only triangle 1593 Trigonometry is the measure of three sides of triangle hope you understand. ? well I don\'t know when it develop ? The branch ofathematics deals with establishb relation etween angle and side |
|
| 24911. |
x2-4ax+4a2b2=0 |
| Answer» We have,x2 - 4ax + 4a2 - b2\xa0= 0{tex}\\Rightarrow{/tex}(x -2a)2\xa0- b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 0{tex}\\Rightarrow{/tex}(x - 2a + b)(x- 2a- b) = 0{tex}\\Rightarrow{/tex}x -2a + b = 0 and x -2a - b = 0{tex}{/tex}{tex}\\Rightarrow{/tex}\xa0x = 2a - b or 2a + b | |
| 24912. |
(1-sinA +cosA) whole square =2 (1+cosA)(1-sinA) |
| Answer» | |
| 24913. |
I want weightage of all subjects with chapter |
| Answer» | |
| 24914. |
Solve eq by factorisation 12abxx -(9a |
| Answer» | |
| 24915. |
Sin2 |
| Answer» | |
| 24916. |
Trip ideantatis janete ka tarika |
| Answer» | |
| 24917. |
4x^2+4bx-(a^2-b^2) |
| Answer» We have the following equation,4x2 + 4bx - (a2 - b2) = 0Now,4x2 + 4bx - (a2 - b2) = 0{tex}\\Rightarrow{/tex}\xa04x2 - 2(a - b)x + 2(a + b)x - (a2 - b2) = 0{tex}\\Rightarrow{/tex} 2x[2x - (a - b)] + (a + b)[2x - (a - b)] = 0{tex}\\Rightarrow{/tex} [2x - (a - b)] [2x + (a + b)] = 0{tex}\\Rightarrow{/tex} 2x - (a - b) = 0 or 2x + (a + b) = 0{tex}\\Rightarrow{/tex}\xa02x = a - b or 2x = -a - b{tex} \\Rightarrow x = \\frac{{a - b}}{2}{/tex} or {tex}x = \\frac{{ - a - b}}{2}{/tex} | |
| 24918. |
Meaning of canal |
| Answer» Long and narrow strip of water made for irrigation or other purpose | |
| 24919. |
2/xsquare_5/x+2=0 |
| Answer» {tex}{2\\over x^2} - {5\\over x} +2 =0 \\\\{/tex}Multiply by x2\xa0both side we get\xa0{tex}2 - 5x + 2x^2 = 0 \\\\2x^2 - 5x +2 = 0 \\\\2x^2-4x-x+2 = 0 \\\\2x(x-2)-1(x-2) = 0 \\\\(2x-1)(x-2) = 0 \\\\{/tex}{tex}x = {1\\over 2}, 2 {/tex} | |
| 24920. |
Two number are in the ratio 7ratio10. If larger numbers is 140. What is the smaller number |
| Answer» | |
| 24921. |
How to find (xi) in chapter 14 |
| Answer» Upper limit of class interval + lower limit / 2 | |
| 24922. |
2(√2+√6)/3(√2+√3) |
| Answer» | |
| 24923. |
Root under -1 value is come or not |
|
Answer» it form an imaginary number or complex number which doesnt exists in reality its not defined bro..!!!!root under -1 |
|
| 24924. |
How we have to do rounded off ? |
| Answer» Because the answer is not come decimal so we take round off. | |
| 24925. |
√x+y=3x+√y=5find the value of x & y |
| Answer» | |
| 24926. |
Solve 2÷x+2÷3y=1÷6 3÷x+2÷y=0And hence find \'a\' for which y=ax-4 |
| Answer» Taking\xa0{tex} \\frac { 1 } { x } = u{/tex}\xa0and\xa0{tex} \\frac { 1 } { y } = v.{/tex}The given system of equations become{tex} 2 u + \\frac { 2 } { 3 } v = \\frac { 1 } { 6 }{/tex}Therefore,\xa0{tex} 12u+4v=1{/tex}............(i)and, {tex}3u+2v=0{/tex}..........(ii)Multiplying (ii) by 2 and subtracting from (i), we get{tex} 6 u = 1 \\Rightarrow u = \\frac { 1 } { 6 }{/tex}Putting\xa0{tex} u = \\frac { 1 } { 6 }{/tex}in (i), we get{tex} 2 + 4 v = 1 \\Rightarrow v = - \\frac { 1 } { 4 }{/tex}Hence,\xa0{tex} x = \\frac { 1 } { u } = 6{/tex}\xa0and\xa0{tex} y = \\frac { 1 } { v } = - 4{/tex}So. the solution of the given system of equations is {tex}x=6,y=-4{/tex}\xa0Putting x = 6, y = -4 in {tex}y=ax-4{/tex}, we get{tex}-4=6a-4{/tex}{tex} \\Rightarrow a=0{/tex} | |
| 24927. |
2x ➗ 10x |
| Answer» 1/5 | |
| 24928. |
Find the other zeros of the polynomial p(x)=2x4+7*3-19*2-14x+30 if two of its zeros are 2 and -2 |
| Answer» | |
| 24929. |
For what value of k Wii k+9,2k-1 and 2k+7 are consecutive terms of an A.P |
| Answer» k+9,2k-1 and 2k+7 are consecutive terms of an A.Pso common difference is(2k-1)- (k+9)=(2k+7)-(2k-1)2k-1- k-9=2k+7-2k+1k-10=8k=18\xa0\xa0 | |
| 24930. |
(2x+3x)-(23x-21)=? |
|
Answer» I think the answer will 21/13 (2x+3x)-(23x-21)= 5x - 23x - 21= -18x-21= -3(6x+7) |
|
| 24931. |
what is the formula of nth terms |
| Answer» a+(n-1)d | |
| 24932. |
In the adjoining figure,E is a point |
| Answer» | |
| 24933. |
Sin/cos |
| Answer» tan | |
| 24934. |
2222 2 ka square |
| Answer» 493,817,284 | |
| 24935. |
How we include the trigonometric ratio on the simple form |
| Answer» | |
| 24936. |
L if sum of n term of AP is 5 and a square minus 3 and find its 10th term |
| Answer» | |
| 24937. |
The sum of n terms of an ap is 3n2+5n. Find the ap .hence find the 15th term |
| Answer» Given : Sn\xa0= 3n2\xa0+ 5nPut n = 1, we get sum of first 1 term i.e first term itself.S1 = a = 3(1)2 5(1) = 3 + 5 = 8So first term is 8.Put n = 2, we get sum of first 2 terms.\xa0S2\xa0= 3(2)2\xa0+ 5(2) = 12+10 = 22Second term =\xa0{tex}S_2 - S_1 = 22 - 8 = 14 {/tex}Common Difference = second term - first term = 14 - 8 = 6\xa0So AP = 8,14,20,26{tex}A_{15} = 8 + 14(6) = 8 + 84 = 92{/tex}\xa0 | |
| 24938. |
What is chemistry |
| Answer» Chemistry is the branch of science concerned with the substances of which matter is composed, the investigation of their properties and reactions, and the use of such reactions to form new substances. | |
| 24939. |
How median is find |
| Answer» | |
| 24940. |
If sin square A=2sin then find the value of A |
| Answer» 2 | |
| 24941. |
What number system |
| Answer» A number system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. | |
| 24942. |
Solve 2x=5y+4 and 3x-2y+16=0 by cross multiplication method |
| Answer» gk | |
| 24943. |
What do you mean by Euclid\'s division lemma |
| Answer» Euclid\'s division lemma, states that for any two positive integers \'a\' and \'b\' we can find two whole numbers \'q\' and \'r\' such that a = b × q + r where 0 ≤ r < b. | |
| 24944. |
Carpenter have draw a door one day 6 hour 50 minut how much time in 10 door |
| Answer» Ans multiply | |
| 24945. |
can two numbers have 18 as their hcf and 380 as their lcm?give reason |
| Answer» No, Because LCM of two number must be divisible by HCF of those two numbers. as 380 is not divisible by 18 so this pair of HCF and LCM for any two number is not possible.\xa0 | |
| 24946. |
Prove that angle subtended by an chord and raii of a circle is sin thita degree |
| Answer» | |
| 24947. |
if the perpendicular center of a ∆ABC is P, then prove that the perpendicular center of ∆PBC is A |
| Answer» | |
| 24948. |
Prove that following identitySin theeta- 2 sin theeta upon 2cos3 theeta - cos theeta = tan theeta |
| Answer» {tex}{\\sin \\theta - 2\\sin^3 \\theta \\over 2\\cos^3 \\theta -\\cos \\theta} = \\tan \\theta {/tex}Taking LHS,\xa0{tex}{\\sin \\theta - 2\\sin^3 \\theta \\over 2\\cos^3 \\theta -\\cos \\theta} \\\\= {\\sin \\theta (1-2\\sin^2 \\theta )\\over \\cos \\theta (2\\cos^2\\theta - 1)}\\\\= {\\sin \\theta (1-\\sin^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta + \\cos^2\\theta - 1)}\\\\={\\sin \\theta (\\cos^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta -(1- \\cos^2\\theta))}\\\\={\\sin \\theta (\\cos^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta -\\sin^2\\theta)}\\\\{/tex}=\xa0{tex}\\tan \\theta = RHS {/tex}Hence Proved | |
| 24949. |
Sin2A=2sinA then find A |
| Answer» {tex}\\sin^2A = 2\\sin A\\\\=> \\sin^2A - 2\\sin A= 0 \\\\=> \\sin A( \\sin A - 2 )= 0 \\\\=> \\sin A = 0 \\ or \\ \\sin A - 2 = 0 \\\\ => \\sin A = \\sin 0^o \\\\=> A = 0^o{/tex} | |
| 24950. |
If in circle the external point is given and no centre is given then how we have to find tangents |
| Answer» | |