Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

24901.

If 5 cot theta 1/4 then find (5sin theta -3cos theta)/(5sin theta+2costheta)

Answer»
24902.

a+b+c=0, a2+b2+c2=1, prove a2b2c2 (

Answer»
24903.

a+b+c=0, a2+b2+c3=1, prove a2b2c2 (

Answer»
24904.

If pth,qth,rth ofan ap is a,b,c show (a-b)r+(b-c)p+(c-a)q=0

Answer» A + (p - 1)D = a ......(i)A + (q - 1)D = b ....... (ii)A + (r - 1)D = c .......(iii)(ii) - (iii)b - c = (q - 1)D - (r - 1)D{tex} \\Rightarrow {/tex}\xa0b - c = D(q - r){tex} \\Rightarrow {/tex}\xa0p(b - c) = p D(q - r) ...... (iv)Similarly,q(c - a) = q D(r - p) ...... (v)r(a - b) = rD (p - q) ...... (vi)Adding (iv), (v) and (vi)p(b-c) + q(c - a) + r(a - b) = 0
24905.

20+5

Answer» 25
24906.

Tell algebraic equation

Answer»
24907.

If sum of first n term of an ap is 3n+2n then find sum of 16th term

Answer» Sn=3n+2n thus S16=3*16+2*16=48+32=80ans.
24908.

App Page so all so so so so so should tzitzit

Answer»
24909.

Sum of zeroes is

Answer» Alpha + beta i,e -b/a
-b/a
Alpha or beta
X
24910.

Define TRIGNOMETRY and when was discovered

Answer» It is not appivable to only triangle
1593
Trigonometry is the measure of three sides of triangle hope you understand. ? well I don\'t know when it develop ?
The branch ofathematics deals with establishb relation etween angle and side
24911.

x2-4ax+4a2b2=0

Answer» We have,x2 - 4ax + 4a2 - b2\xa0= 0{tex}\\Rightarrow{/tex}(x -2a)2\xa0- b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 0{tex}\\Rightarrow{/tex}(x - 2a + b)(x- 2a- b) = 0{tex}\\Rightarrow{/tex}x -2a + b = 0 and x -2a - b = 0{tex}{/tex}{tex}\\Rightarrow{/tex}\xa0x = 2a - b or 2a + b
24912.

(1-sinA +cosA) whole square =2 (1+cosA)(1-sinA)

Answer»
24913.

I want weightage of all subjects with chapter

Answer»
24914.

Solve eq by factorisation 12abxx -(9a

Answer»
24915.

Sin2

Answer»
24916.

Trip ideantatis janete ka tarika

Answer»
24917.

4x^2+4bx-(a^2-b^2)

Answer» We have the following equation,4x2 + 4bx - (a2 - b2) = 0Now,4x2 + 4bx - (a2 - b2) = 0{tex}\\Rightarrow{/tex}\xa04x2 - 2(a - b)x + 2(a + b)x - (a2 - b2) = 0{tex}\\Rightarrow{/tex} 2x[2x - (a - b)] + (a + b)[2x - (a - b)] = 0{tex}\\Rightarrow{/tex} [2x - (a - b)] [2x + (a + b)] = 0{tex}\\Rightarrow{/tex} 2x - (a - b) = 0 or 2x + (a + b) = 0{tex}\\Rightarrow{/tex}\xa02x = a - b or 2x = -a - b{tex} \\Rightarrow x = \\frac{{a - b}}{2}{/tex} or {tex}x = \\frac{{ - a - b}}{2}{/tex}
24918.

Meaning of canal

Answer» Long and narrow strip of water made for irrigation or other purpose
24919.

2/xsquare_5/x+2=0

Answer» {tex}{2\\over x^2} - {5\\over x} +2 =0 \\\\{/tex}Multiply by x2\xa0both side we get\xa0{tex}2 - 5x + 2x^2 = 0 \\\\2x^2 - 5x +2 = 0 \\\\2x^2-4x-x+2 = 0 \\\\2x(x-2)-1(x-2) = 0 \\\\(2x-1)(x-2) = 0 \\\\{/tex}{tex}x = {1\\over 2}, 2 {/tex}
24920.

Two number are in the ratio 7ratio10. If larger numbers is 140. What is the smaller number

Answer»
24921.

How to find (xi) in chapter 14

Answer» Upper limit of class interval + lower limit / 2
24922.

2(√2+√6)/3(√2+√3)

Answer»
24923.

Root under -1 value is come or not

Answer» it form an imaginary number or complex number which doesnt exists in reality
its not defined bro..!!!!root under -1
24924.

How we have to do rounded off ?

Answer» Because the answer is not come decimal so we take round off.
24925.

√x+y=3x+√y=5find the value of x & y

Answer»
24926.

Solve 2÷x+2÷3y=1÷6 3÷x+2÷y=0And hence find \'a\' for which y=ax-4

Answer» Taking\xa0{tex} \\frac { 1 } { x } = u{/tex}\xa0and\xa0{tex} \\frac { 1 } { y } = v.{/tex}The given system of equations become{tex} 2 u + \\frac { 2 } { 3 } v = \\frac { 1 } { 6 }{/tex}Therefore,\xa0{tex} 12u+4v=1{/tex}............(i)and, {tex}3u+2v=0{/tex}..........(ii)Multiplying (ii) by 2 and subtracting from (i), we get{tex} 6 u = 1 \\Rightarrow u = \\frac { 1 } { 6 }{/tex}Putting\xa0{tex} u = \\frac { 1 } { 6 }{/tex}in (i), we get{tex} 2 + 4 v = 1 \\Rightarrow v = - \\frac { 1 } { 4 }{/tex}Hence,\xa0{tex} x = \\frac { 1 } { u } = 6{/tex}\xa0and\xa0{tex} y = \\frac { 1 } { v } = - 4{/tex}So. the solution of the given system of equations is {tex}x=6,y=-4{/tex}\xa0Putting x = 6, y = -4 in {tex}y=ax-4{/tex}, we get{tex}-4=6a-4{/tex}{tex} \\Rightarrow a=0{/tex}
24927.

2x ➗ 10x

Answer» 1/5
24928.

Find the other zeros of the polynomial p(x)=2x4+7*3-19*2-14x+30 if two of its zeros are 2 and -2

Answer»
24929.

For what value of k Wii k+9,2k-1 and 2k+7 are consecutive terms of an A.P

Answer» k+9,2k-1 and 2k+7 are consecutive terms of an A.Pso common difference is(2k-1)- (k+9)=(2k+7)-(2k-1)2k-1- k-9=2k+7-2k+1k-10=8k=18\xa0\xa0
24930.

(2x+3x)-(23x-21)=?

Answer» I think the answer will 21/13
(2x+3x)-(23x-21)= 5x - 23x - 21= -18x-21= -3(6x+7)
24931.

what is the formula of nth terms

Answer» a+(n-1)d
24932.

In the adjoining figure,E is a point

Answer»
24933.

Sin/cos

Answer» tan
24934.

2222 2 ka square

Answer» 493,817,284
24935.

How we include the trigonometric ratio on the simple form

Answer»
24936.

L if sum of n term of AP is 5 and a square minus 3 and find its 10th term

Answer»
24937.

The sum of n terms of an ap is 3n2+5n. Find the ap .hence find the 15th term

Answer» Given : Sn\xa0= 3n2\xa0+ 5nPut n = 1, we get sum of first 1 term i.e first term itself.S1 = a = 3(1)2 5(1) = 3 + 5 = 8So first term is 8.Put n = 2, we get sum of first 2 terms.\xa0S2\xa0= 3(2)2\xa0+ 5(2) = 12+10 = 22Second term =\xa0{tex}S_2 - S_1 = 22 - 8 = 14 {/tex}Common Difference = second term - first term = 14 - 8 = 6\xa0So AP = 8,14,20,26{tex}A_{15} = 8 + 14(6) = 8 + 84 = 92{/tex}\xa0
24938.

What is chemistry

Answer» Chemistry is the branch of science concerned with the substances of which matter is composed, the investigation of their properties and reactions, and the use of such reactions to form new substances.
24939.

How median is find

Answer»
24940.

If sin square A=2sin then find the value of A

Answer» 2
24941.

What number system

Answer» A number system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.
24942.

Solve 2x=5y+4 and 3x-2y+16=0 by cross multiplication method

Answer» gk
24943.

What do you mean by Euclid\'s division lemma

Answer» Euclid\'s division lemma, states that for any two positive integers \'a\' and \'b\' we can find two whole numbers \'q\' and \'r\' such that a = b × q + r where 0 ≤ r < b.
24944.

Carpenter have draw a door one day 6 hour 50 minut how much time in 10 door

Answer» Ans multiply
24945.

can two numbers have 18 as their hcf and 380 as their lcm?give reason

Answer» No, Because LCM of two number must be divisible by HCF of those two numbers. as 380 is not divisible by 18 so this pair of HCF and LCM for any two number is not possible.\xa0
24946.

Prove that angle subtended by an chord and raii of a circle is sin thita degree

Answer»
24947.

if the perpendicular center of a ∆ABC is P, then prove that the perpendicular center of ∆PBC is A

Answer»
24948.

Prove that following identitySin theeta- 2 sin theeta upon 2cos3 theeta - cos theeta = tan theeta

Answer» {tex}{\\sin \\theta - 2\\sin^3 \\theta \\over 2\\cos^3 \\theta -\\cos \\theta} = \\tan \\theta {/tex}Taking LHS,\xa0{tex}{\\sin \\theta - 2\\sin^3 \\theta \\over 2\\cos^3 \\theta -\\cos \\theta} \\\\= {\\sin \\theta (1-2\\sin^2 \\theta )\\over \\cos \\theta (2\\cos^2\\theta - 1)}\\\\= {\\sin \\theta (1-\\sin^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta + \\cos^2\\theta - 1)}\\\\={\\sin \\theta (\\cos^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta -(1- \\cos^2\\theta))}\\\\={\\sin \\theta (\\cos^2 \\theta -\\sin^2 \\theta )\\over \\cos \\theta (\\cos^2\\theta -\\sin^2\\theta)}\\\\{/tex}=\xa0{tex}\\tan \\theta = RHS {/tex}Hence Proved
24949.

Sin2A=2sinA then find A

Answer» {tex}\\sin^2A = 2\\sin A\\\\=> \\sin^2A - 2\\sin A= 0 \\\\=> \\sin A( \\sin A - 2 )= 0 \\\\=> \\sin A = 0 \\ or \\ \\sin A - 2 = 0 \\\\ => \\sin A = \\sin 0^o \\\\=> A = 0^o{/tex}
24950.

If in circle the external point is given and no centre is given then how we have to find tangents

Answer»