Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

25901.

Write your name remove all consonents and then find the probability of vowelANS.probability is 1

Answer» Ans is 1
25902.

What is the relationship between thickness, inner radius, outer radius

Answer»
25903.

https://www.instagram.com/p/BeAN1bFnIvZ/

Answer»
25904.

What is the probability of getting a Friday in a leap year ?

Answer» 2/7
25905.

if p(x)=1+3x then find the value of x.

Answer» -1/3
25906.

Which books are better reliable, dinesh , R.D Sharma, oswal ?

Answer» For maths
Bhai R.D SHARMA is the best
For which subject
R.D.sharma
25907.

En

Answer»
25908.

What is sin 60 *sin40*tan50

Answer» 0.699
25909.

Prove that √39/√49 is irrational number

Answer»
25910.

Show that the numbers 231and 396 are not co primes

Answer» Let us find HCF of 396 and 231 using Euclid’s division algorithm{tex}\\begin{array}{l}396=231\\times1+165\\\\231=165\\times1+66\\\\165=66\\times2+33\\\\66=33\\times2+0\\\\So\\;HCF(396,231)=33\\\\\\end{array}{/tex}So 33 is common factor of 396 and 231and co-prime numbers have\xa0common factor of 1 only.∴ The 396 and 231 are not co-prime.
25911.

Division xxxx +xxx-9xx-3x+18by under root 3 and -3

Answer»
25912.

Difference between CSA and TSA

Answer» CSA area of 4 walls without roof and land.TSA area of room included roof and land
CSA... Curved surface area only side walls...... TSA... Total surface area all sides area..
25913.

Full form of MathsM- meriA- AatmaT- tujheH- hardamS- sataygi

Answer» Why are you sad
?
25914.

1/tanA + cot A × 1/ 1 + sin A + 1/1 - sin A = 2 sec square A

Answer»
25915.

Find the point of intersection of the line x-2=0, y×6=0

Answer»
25916.

If x+y is equal to four and x is 2 then yes

Answer» Y=2
Repeat the question clearly
25917.

Sin60cos30+sin30cos60

Answer» =(Sin)sq.60+(cos)sq.60=1
Ans ni hota mtlb
Paglaaa question hai issk answer nhi hota
1
25918.

If the point p (k-1,2)is equidistant from the points A(3,k) and B(k,5).find the value of k.

Answer» We know that\xa0{tex}P A = \\sqrt { ( k - 1 - 3 ) ^ { 2 } + ( 2 - k ) ^ { 2 } }{/tex}and{tex}P B = \\sqrt { ( k - 1 - k ) ^ { 2 } + ( 2 - 5 ) ^ { 2 } }{/tex}Given that PA = PBSquaring both the sides,PA2 = PB2{tex}\\Rightarrow{/tex}\xa0(k - 1 - 3)2 + (2 - k)2 = (k - 1 - k)2 + (2 - 5 )2{tex}\\Rightarrow{/tex}\xa0(k - 4)2 + (2 - k)2 = (-1)2 + (3)2{tex}\\Rightarrow{/tex}\xa0k2 + 16 - 8k + 4 + k2 - 4k = 1 + 9{tex}\\Rightarrow{/tex}\xa02k2 - 12k + 10 = 0{tex}\\Rightarrow{/tex}\xa0k2 - 6k + 5 = 0{tex}\\Rightarrow{/tex}\xa0k2 - 5k - k + 5 = 0{tex}\\Rightarrow{/tex}\xa0k(k - 5) -1(k - 5)= 0{tex}\\Rightarrow{/tex}\xa0(k - 5)(k - 1) = 0{tex}\\Rightarrow{/tex}\xa0k = 5 or k = 1
25919.

solve for X and Y ax/b-by/a =a+bax-by=2ab

Answer» The given equations may be written as{tex}a^2x - b^2y = a^2b + ab^2{/tex} ....... (i){tex}ax - by = 2ab{/tex} ......... (ii)Multiplying (ii) by b and subtracting the result from (i),\xa0{tex}(a^2\xa0- ab)x = a^2b - ab^2{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(a^2\xa0- ab)x = b(a^2\xa0- ab){/tex}{tex}\\Rightarrow{/tex}{tex}x = b.{/tex}Putting {tex}x = b{/tex} in\xa0(ii), we get{tex}a b - b y = 2 a b {/tex}{tex}\\Rightarrow b y = - a b{/tex}{tex} \\Rightarrow y = \\frac { - a b } { b } = - a{/tex}Hence, x = b and y = -a.
25920.

Find the eleventh term 27 ,29,68.....198

Answer» 540 answer
a11=a(n-1)d = 27(11-1)2 = 27×20 =540
Use Ap formula
25921.

if αandβ are zeros of 3^2-x-4 then find a polynomial whose zeros are 1/2α+β and 1/2β+α

Answer»
25922.

2(lb+bh+lh)

Answer» Total surface area of cuboid
25923.

Prove that the sin

Answer» ?????
Nd
25924.

If sin*sin + cos *cos =1,so by root on both sides why not sin +cos =1 happens?

Answer» (sin^2+cos^2)=(sin+cos)^2-2sin.cos not =1.
Ok
sin²+cos ² ka root over 1 nhi hota
25925.

Tan45 /sin30 +cos30

Answer» Root 3-1
25926.

If the point x x 2 b - 3 - 437 - 5 colonial defined values 5 Gloria the find the value of x

Answer»
25927.

Ef ab parallel a b parallel DC what does it mean

Answer» EF||AB||CD
25928.

Sir. I want to be get 100% in my maths cbsc board examination

Answer» U
But I should change ur thinking
U will get
25929.

For what value of n n^2 -1 is divisible by 8 ?

Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8.
25930.

In mean Assume method how I find the value of x

Answer»
25931.

What is the hcf of smallest composit and prime number

Answer» 1
25932.

If a and B are zeroes of the quadratic polynomial x²+7x+10 then find the value of a+B+ab

Answer» 3
25933.

What is angle?

Answer» Degree on which 2 line s joint
25934.

TanQ+secQ=p find the value of tanQ + secQ

Answer» If it is tan Q - sec Q then ans is 1/p
First of all your question is wrong I think the question will be tanQ- sec Q
25935.

If A,B AND C ARE THE ANGLES OF TRIANGLE SHOW THAT SIN B+C/2=COS A/2

Answer» a+b+c=180°a+b=180°-cOn dividing both sides by 2a+b=90°-c/2Bahut lamba Hai age ka process
25936.

Prove that sin6A +cos6A =1-3sin2Acos2A

Answer»
25937.

X2-(2b-1)x+(b2-b-20)=0 find the value of x

Answer» In the given quadratic equation,\xa0x2 - (2b - 1 ) x + (b2- b - 20) = 0A= +1, B=\xa0- (2b - 1 ), C=\xa0(b2- b - 20){tex}x = {-B \\pm \\sqrt{B^2-4AC} \\over 2A}{/tex}{tex}x = \\frac { ( 2 b - 1 ) \\pm \\sqrt { ( 2 b - 1 ) ^ { 2 } - 4 \\left( b ^ { 2 } - b - 20 \\right) } } { 2 }{/tex}{tex}x = \\frac { ( 2 b - 1 ) \\pm 9 } { 2 }{/tex}{tex}x = \\frac { 2 b + 8 } { 2 } \\quad and \\quad x = \\frac { 2 b - 10 } { 2 }{/tex}{tex}\\therefore x= b+4 \\quad and \\quad x=b-5{/tex}\xa0
25938.

Transitive relation

Answer» A binary relation R over a set X is transitive if whenever an element a is related to an element b and b is related to an element c then a is also related to c.
25939.

How many marks are listed in chapter of constructions

Answer»
25940.

Find the coordinates of a point on y-axis which is nearest to the point (-2,5)

Answer» The point on y-axis that is nearest to the point(-2,5) is (0,5).
25941.

Prove that√7 is irrational number

Answer» See NCERT chapter 1
Refer Ncert its quite long
25942.

show that the square of an odd positive integer is of the form 8q+1,for some integer q?

Answer» It is to long plz see NCERT chapter 1ex:1.3
25943.

Prove that the ratio of the area of two similar triangle is equal to the square of its medians

Answer» Given: \u200b{tex}\\triangle {/tex}\u200bABC \u200b{tex} \\sim {/tex}\u200b {tex}\\triangle {/tex}DEFAM is a median in \u200b{tex}\\triangle {/tex}\u200bABC and DN is the corresponding median in {tex}\\triangle {/tex}DEFTo prove:{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex}Proof: \u200b{tex}\\triangle {/tex}\u200bDBC \u200b{tex} \\sim {/tex}\u200b {tex}\\triangle {/tex}DEF\u200b{tex}\\Rightarrow {/tex}\u200b\u200b{tex}\\angle{/tex}\u200b A = \u200b{tex}\\angle{/tex}\u200b D, \u200b{tex}\\angle{/tex}\u200b B = \u200b{tex}\\angle{/tex}\u200b E, \u200b{tex}\\angle{/tex}\u200b C = \u200b{tex}\\angle{/tex}\u200b F and{tex}\\frac{{AB}}{{DE}} = \\frac{{BC}}{{EF}} = \\frac{{AC}}{{DF}}{/tex}Also, {tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}}{/tex}={tex}\\frac{{A{B^2}}}{{D{E^2}}} = \\frac{{B{C^2}}}{{E{F^2}}} = \\frac{{A{C^2}}}{{D{F^2}}}{/tex}........(i)[area theorem]Now,{tex}\\frac{{AB}}{{DE}} = \\frac{{BC}}{{EF}} = \\frac{{\\frac{1}{2}BC}}{{\\frac{1}{2}EF}} = \\frac{{BM}}{{EN}}{/tex}..............(ii)In {tex}\\triangle {/tex}ABM and DEN\u200b{tex}\\angle{/tex}\u200b B= \u200b{tex}\\angle{/tex}\u200b E and {tex}\\frac{{AB}}{{DE}} = \\frac{{BM}}{{EN}}{/tex} [From (ii)]\u200b{tex}\\Rightarrow {/tex}\u200b\u200b{tex}\\triangle {/tex}ABM \u200b{tex} \\sim {/tex}\u200b{tex}\\triangle {/tex}DEN [SAS similarity]\u200b{tex}\\Rightarrow {/tex}\u200b{tex}\\frac{{area\\vartriangle ABM}}{{area\\vartriangle DEN}} = \\frac{{A{B^2}}}{{D{E^2}}} = \\frac{{A{M^2}}}{{D{N^2}}} = \\frac{{B{M^2}}}{{E{N^2}}}{/tex}............(iii)From (i) and (iii), we get{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex}
25944.

X^4+x^3+8x^2+ax+b is divisible by x^2+1. Find the value of \'a\' &\'b\'

Answer» If {tex}x^4+x^3+8x^2+ax +b{/tex}\xa0is exactly divisible by x2 + 1, the remainder after division should be zero.Now let us perform long divisionWe get, remainder = x (a - 1) + (b - 7)\xa0x (a - 1) + (b - 7 ) = 0{tex}\\Rightarrow{/tex}\xa0x (a - 1) + (b - 7) = 0x + 0{tex}\\Rightarrow{/tex}\xa0a - 1 = 0 and b - 7 = 0\xa0[On equating the coefficients of like powers of x]{tex}\\Rightarrow{/tex}a = 1 and b = 7
25945.

Root 2 irrattional

Answer»
25946.

6.5/15

Answer»
25947.

Area of minor segment

Answer» theta/360 pi (r)r - 1/2 (r)r sin theta..
Theta÷360×pi r sq -half r sq sin theta
25948.

What are the optional subject in commerce??? And which one is easy...???

Answer» depends on u...
25949.

1dm=

Answer» 10m
0.1cm
25950.

Is sample question paper is real blue print of board exam

Answer» Naaa
NO
No its just practice question for exam that this types of questions can be asked!!