Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 25901. |
Write your name remove all consonents and then find the probability of vowelANS.probability is 1 |
| Answer» Ans is 1 | |
| 25902. |
What is the relationship between thickness, inner radius, outer radius |
| Answer» | |
| 25903. |
https://www.instagram.com/p/BeAN1bFnIvZ/ |
| Answer» | |
| 25904. |
What is the probability of getting a Friday in a leap year ? |
| Answer» 2/7 | |
| 25905. |
if p(x)=1+3x then find the value of x. |
| Answer» -1/3 | |
| 25906. |
Which books are better reliable, dinesh , R.D Sharma, oswal ? |
|
Answer» For maths Bhai R.D SHARMA is the best For which subject R.D.sharma |
|
| 25907. |
En |
| Answer» | |
| 25908. |
What is sin 60 *sin40*tan50 |
| Answer» 0.699 | |
| 25909. |
Prove that √39/√49 is irrational number |
| Answer» | |
| 25910. |
Show that the numbers 231and 396 are not co primes |
| Answer» Let us find HCF of 396 and 231 using Euclid’s division algorithm{tex}\\begin{array}{l}396=231\\times1+165\\\\231=165\\times1+66\\\\165=66\\times2+33\\\\66=33\\times2+0\\\\So\\;HCF(396,231)=33\\\\\\end{array}{/tex}So 33 is common factor of 396 and 231and co-prime numbers have\xa0common factor of 1 only.∴ The 396 and 231 are not co-prime. | |
| 25911. |
Division xxxx +xxx-9xx-3x+18by under root 3 and -3 |
| Answer» | |
| 25912. |
Difference between CSA and TSA |
|
Answer» CSA area of 4 walls without roof and land.TSA area of room included roof and land CSA... Curved surface area only side walls...... TSA... Total surface area all sides area.. |
|
| 25913. |
Full form of MathsM- meriA- AatmaT- tujheH- hardamS- sataygi |
|
Answer» Why are you sad ? |
|
| 25914. |
1/tanA + cot A × 1/ 1 + sin A + 1/1 - sin A = 2 sec square A |
| Answer» | |
| 25915. |
Find the point of intersection of the line x-2=0, y×6=0 |
| Answer» | |
| 25916. |
If x+y is equal to four and x is 2 then yes |
|
Answer» Y=2 Repeat the question clearly |
|
| 25917. |
Sin60cos30+sin30cos60 |
|
Answer» =(Sin)sq.60+(cos)sq.60=1 Ans ni hota mtlb Paglaaa question hai issk answer nhi hota 1 |
|
| 25918. |
If the point p (k-1,2)is equidistant from the points A(3,k) and B(k,5).find the value of k. |
| Answer» We know that\xa0{tex}P A = \\sqrt { ( k - 1 - 3 ) ^ { 2 } + ( 2 - k ) ^ { 2 } }{/tex}and{tex}P B = \\sqrt { ( k - 1 - k ) ^ { 2 } + ( 2 - 5 ) ^ { 2 } }{/tex}Given that PA = PBSquaring both the sides,PA2 = PB2{tex}\\Rightarrow{/tex}\xa0(k - 1 - 3)2 + (2 - k)2 = (k - 1 - k)2 + (2 - 5 )2{tex}\\Rightarrow{/tex}\xa0(k - 4)2 + (2 - k)2 = (-1)2 + (3)2{tex}\\Rightarrow{/tex}\xa0k2 + 16 - 8k + 4 + k2 - 4k = 1 + 9{tex}\\Rightarrow{/tex}\xa02k2 - 12k + 10 = 0{tex}\\Rightarrow{/tex}\xa0k2 - 6k + 5 = 0{tex}\\Rightarrow{/tex}\xa0k2 - 5k - k + 5 = 0{tex}\\Rightarrow{/tex}\xa0k(k - 5) -1(k - 5)= 0{tex}\\Rightarrow{/tex}\xa0(k - 5)(k - 1) = 0{tex}\\Rightarrow{/tex}\xa0k = 5 or k = 1 | |
| 25919. |
solve for X and Y ax/b-by/a =a+bax-by=2ab |
| Answer» The given equations may be written as{tex}a^2x - b^2y = a^2b + ab^2{/tex} ....... (i){tex}ax - by = 2ab{/tex} ......... (ii)Multiplying (ii) by b and subtracting the result from (i),\xa0{tex}(a^2\xa0- ab)x = a^2b - ab^2{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(a^2\xa0- ab)x = b(a^2\xa0- ab){/tex}{tex}\\Rightarrow{/tex}{tex}x = b.{/tex}Putting {tex}x = b{/tex} in\xa0(ii), we get{tex}a b - b y = 2 a b {/tex}{tex}\\Rightarrow b y = - a b{/tex}{tex} \\Rightarrow y = \\frac { - a b } { b } = - a{/tex}Hence, x = b and y = -a. | |
| 25920. |
Find the eleventh term 27 ,29,68.....198 |
|
Answer» 540 answer a11=a(n-1)d = 27(11-1)2 = 27×20 =540 Use Ap formula |
|
| 25921. |
if αandβ are zeros of 3^2-x-4 then find a polynomial whose zeros are 1/2α+β and 1/2β+α |
| Answer» | |
| 25922. |
2(lb+bh+lh) |
| Answer» Total surface area of cuboid | |
| 25923. |
Prove that the sin |
|
Answer» ????? Nd |
|
| 25924. |
If sin*sin + cos *cos =1,so by root on both sides why not sin +cos =1 happens? |
|
Answer» (sin^2+cos^2)=(sin+cos)^2-2sin.cos not =1. Ok sin²+cos ² ka root over 1 nhi hota |
|
| 25925. |
Tan45 /sin30 +cos30 |
| Answer» Root 3-1 | |
| 25926. |
If the point x x 2 b - 3 - 437 - 5 colonial defined values 5 Gloria the find the value of x |
| Answer» | |
| 25927. |
Ef ab parallel a b parallel DC what does it mean |
| Answer» EF||AB||CD | |
| 25928. |
Sir. I want to be get 100% in my maths cbsc board examination |
|
Answer» U But I should change ur thinking U will get |
|
| 25929. |
For what value of n n^2 -1 is divisible by 8 ? |
| Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8. | |
| 25930. |
In mean Assume method how I find the value of x |
| Answer» | |
| 25931. |
What is the hcf of smallest composit and prime number |
| Answer» 1 | |
| 25932. |
If a and B are zeroes of the quadratic polynomial x²+7x+10 then find the value of a+B+ab |
| Answer» 3 | |
| 25933. |
What is angle? |
| Answer» Degree on which 2 line s joint | |
| 25934. |
TanQ+secQ=p find the value of tanQ + secQ |
|
Answer» If it is tan Q - sec Q then ans is 1/p First of all your question is wrong I think the question will be tanQ- sec Q |
|
| 25935. |
If A,B AND C ARE THE ANGLES OF TRIANGLE SHOW THAT SIN B+C/2=COS A/2 |
| Answer» a+b+c=180°a+b=180°-cOn dividing both sides by 2a+b=90°-c/2Bahut lamba Hai age ka process | |
| 25936. |
Prove that sin6A +cos6A =1-3sin2Acos2A |
| Answer» | |
| 25937. |
X2-(2b-1)x+(b2-b-20)=0 find the value of x |
| Answer» In the given quadratic equation,\xa0x2 - (2b - 1 ) x + (b2- b - 20) = 0A= +1, B=\xa0- (2b - 1 ), C=\xa0(b2- b - 20){tex}x = {-B \\pm \\sqrt{B^2-4AC} \\over 2A}{/tex}{tex}x = \\frac { ( 2 b - 1 ) \\pm \\sqrt { ( 2 b - 1 ) ^ { 2 } - 4 \\left( b ^ { 2 } - b - 20 \\right) } } { 2 }{/tex}{tex}x = \\frac { ( 2 b - 1 ) \\pm 9 } { 2 }{/tex}{tex}x = \\frac { 2 b + 8 } { 2 } \\quad and \\quad x = \\frac { 2 b - 10 } { 2 }{/tex}{tex}\\therefore x= b+4 \\quad and \\quad x=b-5{/tex}\xa0 | |
| 25938. |
Transitive relation |
| Answer» A binary relation R over a set X is transitive if whenever an element a is related to an element b and b is related to an element c then a is also related to c. | |
| 25939. |
How many marks are listed in chapter of constructions |
| Answer» | |
| 25940. |
Find the coordinates of a point on y-axis which is nearest to the point (-2,5) |
| Answer» The point on y-axis that is nearest to the point(-2,5) is (0,5). | |
| 25941. |
Prove that√7 is irrational number |
|
Answer» See NCERT chapter 1 Refer Ncert its quite long |
|
| 25942. |
show that the square of an odd positive integer is of the form 8q+1,for some integer q? |
| Answer» It is to long plz see NCERT chapter 1ex:1.3 | |
| 25943. |
Prove that the ratio of the area of two similar triangle is equal to the square of its medians |
| Answer» Given: \u200b{tex}\\triangle {/tex}\u200bABC \u200b{tex} \\sim {/tex}\u200b {tex}\\triangle {/tex}DEFAM is a median in \u200b{tex}\\triangle {/tex}\u200bABC and DN is the corresponding median in {tex}\\triangle {/tex}DEFTo prove:{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex}Proof: \u200b{tex}\\triangle {/tex}\u200bDBC \u200b{tex} \\sim {/tex}\u200b {tex}\\triangle {/tex}DEF\u200b{tex}\\Rightarrow {/tex}\u200b\u200b{tex}\\angle{/tex}\u200b A = \u200b{tex}\\angle{/tex}\u200b D, \u200b{tex}\\angle{/tex}\u200b B = \u200b{tex}\\angle{/tex}\u200b E, \u200b{tex}\\angle{/tex}\u200b C = \u200b{tex}\\angle{/tex}\u200b F and{tex}\\frac{{AB}}{{DE}} = \\frac{{BC}}{{EF}} = \\frac{{AC}}{{DF}}{/tex}Also, {tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}}{/tex}={tex}\\frac{{A{B^2}}}{{D{E^2}}} = \\frac{{B{C^2}}}{{E{F^2}}} = \\frac{{A{C^2}}}{{D{F^2}}}{/tex}........(i)[area theorem]Now,{tex}\\frac{{AB}}{{DE}} = \\frac{{BC}}{{EF}} = \\frac{{\\frac{1}{2}BC}}{{\\frac{1}{2}EF}} = \\frac{{BM}}{{EN}}{/tex}..............(ii)In {tex}\\triangle {/tex}ABM and DEN\u200b{tex}\\angle{/tex}\u200b B= \u200b{tex}\\angle{/tex}\u200b E and {tex}\\frac{{AB}}{{DE}} = \\frac{{BM}}{{EN}}{/tex} [From (ii)]\u200b{tex}\\Rightarrow {/tex}\u200b\u200b{tex}\\triangle {/tex}ABM \u200b{tex} \\sim {/tex}\u200b{tex}\\triangle {/tex}DEN [SAS similarity]\u200b{tex}\\Rightarrow {/tex}\u200b{tex}\\frac{{area\\vartriangle ABM}}{{area\\vartriangle DEN}} = \\frac{{A{B^2}}}{{D{E^2}}} = \\frac{{A{M^2}}}{{D{N^2}}} = \\frac{{B{M^2}}}{{E{N^2}}}{/tex}............(iii)From (i) and (iii), we get{tex}\\frac{{area\\vartriangle ABC}}{{area\\vartriangle DEF}} = \\frac{{A{M^2}}}{{D{N^2}}}{/tex} | |
| 25944. |
X^4+x^3+8x^2+ax+b is divisible by x^2+1. Find the value of \'a\' &\'b\' |
| Answer» If {tex}x^4+x^3+8x^2+ax +b{/tex}\xa0is exactly divisible by x2 + 1, the remainder after division should be zero.Now let us perform long divisionWe get, remainder = x (a - 1) + (b - 7)\xa0x (a - 1) + (b - 7 ) = 0{tex}\\Rightarrow{/tex}\xa0x (a - 1) + (b - 7) = 0x + 0{tex}\\Rightarrow{/tex}\xa0a - 1 = 0 and b - 7 = 0\xa0[On equating the coefficients of like powers of x]{tex}\\Rightarrow{/tex}a = 1 and b = 7 | |
| 25945. |
Root 2 irrattional |
| Answer» | |
| 25946. |
6.5/15 |
| Answer» | |
| 25947. |
Area of minor segment |
|
Answer» theta/360 pi (r)r - 1/2 (r)r sin theta.. Theta÷360×pi r sq -half r sq sin theta |
|
| 25948. |
What are the optional subject in commerce??? And which one is easy...??? |
| Answer» depends on u... | |
| 25949. |
1dm= |
|
Answer» 10m 0.1cm |
|
| 25950. |
Is sample question paper is real blue print of board exam |
|
Answer» Naaa NO No its just practice question for exam that this types of questions can be asked!! |
|