Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26001.

How many cubes of 10 cm edge can be put in a cubical box of 1m edge

Answer» Given Edge = 1 m = 100 cmVolume = side3= (100)3= 1000000 cm3Volumes of cubes of 10 cm edge = 103 = 1000 cm3Number of cubes\xa0{tex}= \\frac { 1000000 } { 1000 }{/tex}= 1000 cubes
26002.

How to find underoot

Answer»
26003.

If cosecA-cotA =1/4Then cosecA+contact =?

Answer» cosecA-cotA = 1/4 {given}Now we multiply and divide cosecA + cotA on L.H.SSo, we get{cosecA-cotA × cosecA+cotA} / cosecA + cotA = 1/4cosec^2A - cot^2A / cosecA+cotA =1/4We know that cosec^2A-cot^2A=1So, we get1/cosecA +cotA =1/4Therefore,cosecA+cotA =4
cosecA- cotA= 1/4(cosecA-cotA)^2=(1/4)^2(cosec^2)A+(cot^2)A-2cosecAcotA=1/161+(cot^2)A+(cot^2)A-2cosecAcotA=1/162(cot^2)A-2cosecAcotA=1-1/162cotA(cotA-cosecA)=-15/16. -1)Now,cosecA-cotA=1/4cotA-cosecA=-1/4Now putting this in -1)2cotA(-1/4)=-15/16cotA=15/8now cosecA=(1/4)+15/8 cosecA=17/8To find out: cosecA+cotA =(17/8)+(15/8) =32/8 =4 Ans
Sorry there is cotA not contact
26004.

8+9

Answer» 17
26005.

the 4 th term of AP is 0 . prove that the 25th term of the A.P is three times its 11th term

Answer» Did uh get dat?
Given, a+3d=025th term,a+24d11th term,a+10d24d can b written as 3d+21dsame as(24d)10d can b written as 3d+7d (10d)So,A+24dA+3d+21d,A+10dA+3d+7d,Atq..A+3d=0Soo A+3d+21d= 0+21=21A+3d+7d=0+7=721= 3(7)Proved
..
I love you
26006.

details of cards

Answer» Page no. 301
total crds is 52
It is in Ncert.
26007.

Whose board preparation has been completed?

Answer» Aap Apni bato humne to abhi start bhi nhi Ki
26008.

If sinα = 1/2, prove that 3cosα - 4cos3α = 0

Answer» Sinα=p/h so p=1and h=2 by applying Pythagoras theoram we get b here so you have to put the value of cosα that is b/h.
26009.

which sample paper is best for preparing board exam

Answer» Oswaal...
Oswal
U like
26010.

Very hard chapter in mathematics anybody know..?

Answer» No any
Surface area and volume ??
Sahi bole
Triangles
26011.

General term of ap

Answer» One More is sum
A+D
A+(N-1)D
It is also known as nth term of an AP is written as an
26012.

Solve for x : 1/x+1 + 2/x+2 = 4/x+4 , x not equal 1,-2-4.

Answer» {tex}\\frac { 1 } { x + 1 } + \\frac { 2 } { x + 2 } = \\frac { 4 } { x + 4 }{/tex}or,\xa0{tex}\\frac { x + 2 + 2 ( x + 1 ) } { ( x + 1 ) ( x + 2 ) } = \\frac { 4 } { x + 4 }{/tex}or,{tex}\\frac { 3 x + 4 } { x ^ { 2 } + 3 x + 2 } = \\frac { 4 } { x + 4 }{/tex}or,{tex}( 3 x + 4 ) ( x + 4 ) = 4 \\left( x ^ { 2 } + 3 x + 2 \\right){/tex}or,{tex}3 x ^ { 2 } + 16 x + 16 = 4 x ^ { 2 } + 12 x + 8{/tex}or,{tex}x ^ { 2 } - 4 x - 8 = 0{/tex}or,\xa0{tex}x = \\frac { - b \\pm \\sqrt { b ^ { 2 } - 4 a c } } { 2 a }{/tex}or,\xa0{tex}x = \\frac { - ( - 4 ) \\pm \\sqrt { ( - 4 ) ^ { 2 } - 4 ( 1 ) ( - 8 ) } } { 2 \\times 1 }{/tex}or,\xa0{tex}x = \\frac { 4 \\pm \\sqrt { 16 + 32 } } { 2 }{/tex}or,{tex}x = \\frac { 4 \\pm \\sqrt { 48 } } { 2 } = \\frac { 4 \\pm 4 \\sqrt { 3 } } { 2 }{/tex}or,\xa0{tex}x = 2 \\pm 2 \\sqrt { 3 }{/tex}Hence,\xa0{tex}x = 2 + 2 \\sqrt { 3 } \\text { or } 2 - 2 \\sqrt { 3 }{/tex}
26013.

How we make 10 root 3 by 30/ root 3

Answer»
26014.

Find the value of k for which x =1 is a root of x^2 +kx+3=0

Answer» (1)^2+k1+3=01+k+3=04+k=0K= -4
26015.

Prove that underoot P +underoot Q is irrational number

Answer» Suppose that {tex} \\sqrt { p } + \\sqrt { q }{/tex} is a rational number equal to {tex} \\frac { a } { b }{/tex}, where a and b are integers having no common factor.Now,\xa0{tex} \\sqrt { p } + \\sqrt { q } = \\frac { a } { b }{/tex}{tex} \\Rightarrow \\sqrt { p } = \\frac { a } { b } - \\sqrt { q }{/tex} (squaring both side){tex} \\Rightarrow \\quad ( \\sqrt { p } ) ^ { 2 } = \\left( \\frac { a } { b } - \\sqrt { q } \\right) ^ { 2 }{/tex}{tex} \\Rightarrow \\quad p = \\frac { a ^ { 2 } } { b ^ { 2 } } - 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } + q{/tex}{tex} \\Rightarrow \\quad 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } = \\frac { a ^ { 2 } } { b ^ { 2 } } + q - p{/tex}{tex} \\Rightarrow \\quad 2 \\frac { a } { b } \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { b ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { 2 a b }{/tex}{tex} \\Rightarrow \\sqrt { q }{/tex}\xa0is a rational number. (because sum of two rational numbers is always rational)This is a contradiction as\xa0{tex} \\sqrt { q }{/tex}\xa0is an irrational number.Hence,\xa0{tex} \\sqrt { p } + \\sqrt { q }{/tex}\xa0is an irrational number.
26016.

The value of tan A is always less than 1. True or false

Answer» Hiii!!!!
26017.

The lengths of the diagonals of a rhombus are 30cm and 40cm.Find the side of rhombus

Answer» 25cm
26018.

Alpha

Answer» Particle
26019.

X×3/y-3 = 18/11...........(1). X+8/y×2=2/5...............(2)Find x/y

Answer» X=12and y=25
Sidhe sidhe bol na nai ban raha hai
Abe unpadh hai kya wrong question bol raha hai
Wrong question... stupid
What is this?????
****
26020.

What is Orrd number

Answer» Heyyy ,,,atul how r u.??
26021.

How to solve quadratic equations involving varisble a b and x.

Answer»
26022.

in the figure given alongside, I find the measure of angle ACD.

Answer»
26023.

Find the positive root of the equations √3x^2 +6=9

Answer» Root under 3
26024.

If points (p,q),(m,n) & (p-m,q-n) are collinear than proof that , pn = qm.

Answer» Okay!!!!!!!!!
So easy apply the area formula and bcoz points are collinear....area = 0
26025.

If sec(they)= x+1/4x prove sec(the)+tan(there)= 2x or 1/2x

Answer» By the given condition of question\xa0{tex}\\sec \\theta = x + \\frac { 1 } { 4 x }{/tex}{tex}\\therefore \\quad \\tan ^ { 2 } \\theta = \\sec ^ { 2 } \\theta - 1{/tex}{tex}\\Rightarrow \\quad \\tan ^ { 2 } \\theta = \\left( x + \\frac { 1 } { 4 x } \\right) ^ { 2 } - 1 = x ^ { 2 } + \\frac { 1 } { 16 x ^ { 2 } } + \\frac { 1 } { 2 } - 1 = x ^ { 2 } + \\frac { 1 } { 16 x ^ { 2 } } - \\frac { 1 } { 2 } = \\left( x - \\frac { 1 } { 4 x } \\right) ^ { 2 }{/tex}{tex}\\Rightarrow \\quad \\tan \\theta = \\pm \\left( x - \\frac { 1 } { 4 x } \\right){/tex}{tex}\\Rightarrow \\quad \\tan \\theta = \\left( x - \\frac { 1 } { 4 x } \\right) \\text { or, } \\tan \\theta = - \\left( x - \\frac { 1 } { 4 x } \\right){/tex}CASE 1: When\xa0{tex}\\tan \\theta = - \\left( x - \\frac { 1 } { 4 x } \\right) :{/tex}\xa0In this case,{tex}\\sec \\theta + \\tan \\theta = x + \\frac { 1 } { 4 x } + x - \\frac { 1 } { 4 x } = 2 x{/tex}CASE 2: When\xa0{tex}\\theta = - \\left( x - \\frac { 1 } { 4 x } \\right) :{/tex}\xa0In this case,{tex}\\sec \\theta + \\tan \\theta = \\left( x + \\frac { 1 } { 4 x } \\right) - \\left( x - \\frac { 1 } { 4 x } \\right) = \\frac { 2 } { 4 x } = \\frac { 1 } { 2 x }{/tex}Hence,\xa0{tex}\\sec \\theta + \\tan \\theta = 2 x \\text { or } , \\frac { 1 } { 2 x }{/tex}
26026.

If d is the HCF of 468 and 222, find the value of integers x and y which satisfy d=468x+222y.

Answer» Given integers are 468 and 222, where 468 > 222By applying Euclid’s division lemma, we get468 = 222 {tex}\\times{/tex}\xa02 + 24.222 = 24 {tex}\\times{/tex}\xa09 + 6.24 = 6 {tex}\\times{/tex}\xa04 + 0.We observe that remainder is 0. So the last divisor 6 is the H.C.F. of 468 and 222 .6 = 222 - 24 {tex}\\times{/tex}\xa096 = 222 - (468 - 222 {tex}\\times{/tex}\xa02) {tex}\\times{/tex}\xa09 [Substituting 24 = 468 - 222 {tex}\\times{/tex}\xa02]6 = 222 - 468 × 9 + 222 {tex}\\times{/tex}\xa0186 = 222(1 + 18) - 468 × 96 = 222 {tex}\\times{/tex}\xa019 - 468 {tex}\\times{/tex}\xa096 = 468 ×\xa0(-9) + 222 ×\xa0196 = 468x +\xa0222y where x = - 9 and y = 19.Hence, obtained.
26027.

Two roots of polynomial is -2,-3

Answer» Pls.Complete the que
Yes. What??
So what??
26028.

I less than 1000 is the

Answer» greatest 3- digit number
26029.

What are your hours

Answer» Kaha ke ho tum
26030.

1+tan2a

Answer» is equal to sec2a
26031.

Prove that a quadrilateral drawn outside a circle is square

Answer» See in RD Sharma
26032.

2+3+36+365554896+9*72687528842

Answer» 654553314515
26033.

Ac

Answer» Alternating current
What
Alternating current
26034.

if Sn denotes sum of n terms then prove that S12=3(S8 - S4)

Answer» Let a be the first term and the common difference be d.Sn\xa0=\xa0{tex}\\frac n2{/tex}[2a + (n - 1)d]S12 = {tex}\\frac {12}2{/tex}[2a + (12 - 1)d]= 6[2a + 11d]= 12a + 66dS8 =\xa0{tex}\\frac 82{/tex}[2a + (8 - 1)d]= 4[2a + 7d]= 8a + 28dS4 =\xa0{tex}\\frac 42{/tex}[2a + (4- 1)d]= 2[2a + 3d]= 4a + 6d3(S8 - S4) = 3[(8a + 28d) - (4a + 6d)]= 3[8a + 28d - 4a - 6d]= 3[4a + 22d]= 12a + 66d= S12
26035.

SinA-CosA=0 ,find Sin^4A+ Cos^4A

Answer»
26036.

1-3x-1÷56×87=?

Answer» Ku
Shame on you
26037.

4x²+4bx-(a²-b²)=0

Answer» We have the following equation,4x2 + 4bx - (a2 - b2) = 0Now,4x2 + 4bx - (a2 - b2) = 0{tex}\\Rightarrow{/tex}\xa04x2 - 2(a - b)x + 2(a + b)x - (a2 - b2) = 0{tex}\\Rightarrow{/tex} 2x[2x - (a - b)] + (a + b)[2x - (a - b)] = 0{tex}\\Rightarrow{/tex} [2x - (a - b)] [2x + (a + b)] = 0{tex}\\Rightarrow{/tex} 2x - (a - b) = 0 or 2x + (a + b) = 0{tex}\\Rightarrow{/tex}\xa02x = a - b or 2x = -a - b{tex} \\Rightarrow x = \\frac{{a - b}}{2}{/tex} or {tex}x = \\frac{{ - a - b}}{2}{/tex}
26038.

Prove that root3×root5 is irrational

Answer» If possible, let\xa0{tex}\\sqrt{3}{/tex}\xa0+\xa0{tex}\\sqrt{5}{/tex}\xa0be a rational number equal to x. Then,x =\xa0{tex}\\sqrt{3}{/tex}\xa0+\xa0{tex}\\sqrt{5}{/tex}{tex}\\Rightarrow{/tex}\xa0x2 = ({tex}\\sqrt{3}{/tex}\xa0+\xa0{tex}\\sqrt{5}{/tex})2\xa0{tex}\\Rightarrow{/tex}\xa0x2 = ({tex}\\sqrt{3}{/tex})2 + ({tex}\\sqrt{5}{/tex})2 + 2\xa0{tex}\\times{/tex}\xa0{tex}\\sqrt{3}{/tex}\xa0{tex}\\times{/tex}\xa0{tex}\\sqrt{5}{/tex}= 3 + 5 + 2{tex}\\sqrt{15}{/tex}= 8 + 2{tex}\\sqrt{15}{/tex}{tex}\\Rightarrow{/tex}\xa0x2 - 8 = 2{tex}\\sqrt{15}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{x^2 -8}{2}{/tex}\xa0=\xa0{tex}\\sqrt{15}{/tex}Now, x is rational{tex}\\Rightarrow{/tex}\xa0x2 is rational{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{x^2 - 8}{2}{/tex}\xa0is rational{tex}\\Rightarrow{/tex}\xa0{tex}\\sqrt{15}{/tex}\xa0is rationalBut,\xa0{tex}\\sqrt{15}{/tex}\xa0is irrational.Thus, we arrive at a contradiction. So, our supposition that\xa0{tex}\\sqrt{3}{/tex}\xa0+\xa0{tex}\\sqrt{5}{/tex}\xa0is rational is wrong.Hence,\xa0{tex}\\sqrt{3}{/tex}\xa0+\xa0{tex}\\sqrt{5}{/tex}\xa0is an irrational number.
26039.

1- cos square

Answer» Sin square
26040.

What is the square root of 3

Answer» 1.732
26041.

Prove that √2 + √3 are irrational number

Answer» Let us assume that\xa0{tex}\\sqrt 2 + \\sqrt 3{/tex}\xa0is a rational numberLet {tex}\\sqrt2+\\sqrt3=\\frac{\\mathrm a}{\\mathrm b}{/tex} Where a and b are co-prime positive integersOn squaring both sides, we get{tex}(\\sqrt2+\\sqrt3)^2=\\frac{\\mathrm a^2}{\\mathrm b^2}{/tex}{tex}2+3+2\\sqrt6=\\frac{\\mathrm a^2}{\\mathrm b^2}{/tex}{tex}5 + 2\\sqrt 6 =\\frac{a^2}{b^2}{/tex}\xa0{tex}2\\sqrt6=\\frac{\\mathrm a^2}{\\mathrm b^2}-5{/tex}{tex}2\\sqrt6=\\frac{\\mathrm a^2-5\\mathrm b^2}{\\mathrm b^2}{/tex}{tex}\\sqrt6=\\frac{\\mathrm a^2-5\\mathrm b^2}{2\\mathrm b^2}{/tex}Now\xa0{tex}\\frac{\\mathrm a^2-5\\mathrm b^2}{2\\mathrm b^2}{/tex}\xa0is a rational number.This shows that\xa0{tex}\\sqrt 6{/tex}\xa0is a rational number.But this contradicts the fact that\xa0{tex}\\sqrt 6{/tex}\xa0is an irrational number.This contradiction has raised because we assume that\xa0{tex}\\left( {\\sqrt 2 + \\sqrt 3 } \\right){/tex}\xa0is a rational number.Hence, our assumption is wrong and\xa0{tex}\\left( {\\sqrt 2 + \\sqrt 3 } \\right){/tex}\xa0is an irrational number.
26042.

Find the co ordinate of point which is nearest to the point (-2,5)

Answer» The point on y-axis that is nearest to the point(-2,5) is (0,5).
26043.

Prove that √2 and √3 are irrational number

Answer» \tSuppose\xa0{tex}\\sqrt2{/tex}\xa0is a rational number. That is ,\xa0{tex}\\sqrt2{/tex}\xa0=\xa0{tex}\\frac{p}{q}{/tex}\xa0for some p{tex}\\in{/tex}Z and q {tex}\\in{/tex}Z.\xa0We can assume the fraction is in lowest fraction, That is p and q shares no common factors.\tThen {tex}\\sqrt2q=p{/tex}\xa0\tSquaring both side we get,\xa0\t{tex}2q^2=p^2{/tex}\tSo\xa0{tex}p^2{/tex}\xa0is a multiple of 2,\tlet\'s assume\xa0{tex}p=2m{/tex}\xa0\tThen,\xa0{tex}2q^2=\\left(2m\\right)^2{/tex}\xa0\t{tex}2q^2=4m^2{/tex}\tOr {tex}q^2=2m^2{/tex}\tSo {tex}q^2{/tex}\xa0is a multiple of 2,\t{tex}\\therefore{/tex} q is multiple of 2\tThus p and q shares a common factor.This is contradiction.\t{tex}\\Rightarrow {/tex}{tex}\\sqrt { 2 }{/tex}\xa0is an irrational number.\t\t\tLet us assume that\xa0{tex}\\sqrt 3{/tex}\xa0be a rational number.\t{tex}\\sqrt { 3 } = \\frac { a } { b }{/tex}, where a and b are integers and co-primes and b{tex} \\neq{/tex}0\tSquaring both sides, we have\t{tex}\\frac { a ^ { 2 } } { b ^ { 2 } } = 3{/tex}\tor,\xa0{tex}a ^ { 2 } = 3 b ^ { 2 }{/tex}--------(i)\ta2\xa0is divisible by 3.\tHence a is divisible by 3..........(ii)\tLet a = 3c ( where c is any integer)\tsquaring on both sides we get\t(3c)2\xa0= 3b2\t9c2\xa0= 3b2\tb2\xa0= 3c2\tso b2\xa0is divisible by 3\thence, b is divisible by 3..........(iii)\tFrom equation(ii) and (iii), we have\t3 is a factor of a and b which is contradicting the fact that a and b are co-primes.\tThus, our assumption that\xa0{tex}\\sqrt 3{/tex} is rational number is wrong.\tHence,\xa0{tex}\\sqrt 3{/tex}\xa0is an irrational number.\t
26044.

What is the probability that a leap year selected at random will contain 53 Thursday

Answer» 2\\7
26045.

Prove that √3 is irrational

Answer» See the answer in rs aggrawal class 10 pg no. 28
yha prove kse kre??
26046.

Prove that root3 is irrational

Answer» Let us assume that 3 is rational.That is, we can find integers a and b (≠0) such that\xa0a and b are co-prime{tex}\\style{font-family:Arial}{\\begin{array}{l}\\sqrt3=\\frac ab\\\\b\\sqrt3=a\\\\on\\;squaring\\;both\\;sides\\;we\\;get\\\\3b^2=a^2\\end{array}}{/tex}Therefore, a2 is divisible by 3,\xa0it follows that a is also divisible by 3.So, we can write a = 3c for some integer c.Substituting for a, we get 3b2 = 9c2, that is, b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= 3c2This means that b2 is divisible by 3, and so b is also divisible by 3\xa0Therefore, a and b have at least 3 as a common factor.But this contradicts the fact that a and b are co-prime.This contradiction has arisen because of our incorrect assumption that 3 is rational.So, we conclude that 3 is irrational.
26047.

If x=3+root 7 then find the value of x+1/×

Answer» 9+root 7÷2
9+root7/2
39-13root3/6
26048.

The sum of two numbers is 17 and the sum of their squars is 157. Find the numbes

Answer» May I know the process
11 and 6
26049.

How to find value of k in given quadratic equation

Answer» Where is equation
According to given question
26050.

Show that the product of three consecutive natural numbers is divisible by 6

Answer» Skb*
Yes kab is Sahil..
3,5,7
Ok
Bataoge tum sahil ho na
Pujara?
I m Cheteshwar ?
nahi mazaa lene
Ya DB
Skb are you sahil
SKB TIME PASS KERNE AYE HO KYA?
Very hard but chota sa h
You can take help from rd sharma
Very easy but quite long to