Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26151.

ax

Answer» because he is satisfied with his work
????????
26152.

If sin + cosec =2 then sin6 + cosec =?

Answer» Ncert se kar lo
Equayion banake put kar do.
26153.

Tt

Answer» What is this
?
26154.

Write the relationship among mean, median and mode. If the mean of data is 27 and median is 33.

Answer» Mode = 3median - 2mean
26155.

7/75 Has terminating decimal expension or non terminating decimal expension

Answer» This has terminating decimal expension
26156.

You don\'t have to be great to start but have to start to be great . Believe that.??

Answer»
26157.

Formula of mean, median ,mode

Answer» Mode= sigma find xi ÷ fi
It is in book
26158.

2xsquare +x+4=0

Answer»
26159.

If the circumfrence of a circle exceed its diameter by 30cm,find the radius of the circle.

Answer» Aur tha Ok Muje Raakhi bandhne kab aaogi Behna?
Bro mere khne ka sense kuch Aur tha
Bro nhi khoge hme Ok mt kho tumari marzi?
Bro hum nhi khenge
Muje log pyaar se Homo sapien kehte h ?
Who are you?
Bahut padti ho tum ??
26160.

Show that( 3-√5)square

Answer» Bro not possible here
26161.

Show that 3 minus root 5 whole square is irrational

Answer» Not possible here refer Ncert
26162.

a+b+c=0 then find (a^4+b^4+c^4)÷a^2b^2+b^2c^2+c^2a^2

Answer»
26163.

What is the formula of mode

Answer» Thank U for correcting me Aditya bro .I wrote the answer in a wrong way.?
L+f-f1/2f-f1-f2*h
l+(F1-F0/2F1-F0-F2)h
26164.

ax+by=1 bx+ay=(a+b)2÷(a+b)2 -1

Answer» Given equations are{tex}ax + by - 1 = 0{/tex}....(i) and {tex}bx + ay ={/tex}\xa0{tex}\\frac { ( a + b ) ^ { 2 } - \\left( a ^ { 2 } + b ^ { 2 } \\right) } { a ^ { 2 } + b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}{tex}bx + ay ={/tex}\xa0{tex}\\frac { 2 a b } { a ^ { 2 } + b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}{tex}(a^2 + b^2)bx + (a^2 + b^2)ay - 2ab = 0{/tex}...(ii)Here a1 = a, b1 = b, c1 = -1a2 = (a2 + b2)b,b2 = (a2 + b2)a,{tex}c_2 = -2ab{/tex}By cross multiplying method, we have{tex}\\Rightarrow{/tex}{tex}\\frac { x } { b _ { 1 } c _ { 2 } - b _ { 2 } c _ { 1 } }{/tex}\xa0=\xa0{tex}\\frac { y } { c _ { 1 } a _ { 2 } - c _ { 2 } a _ { 1 } }{/tex}\xa0=\xa0{tex}\\frac { 1 } { a _ { 1 } b _ { 2 } - a _ { 2 } b _ { 1 } }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { x } { b \\times ( - 2 a b ) - \\left( a ^ { 2 } + b ^ { 2 } \\right) a \\times ( - 1 ) }{/tex}\xa0=\xa0{tex}\\frac { y } { - 1 \\times \\left( a ^ { 2 } + b ^ { 2 } \\right) b - ( - 2 a b ) \\times a }{/tex}\xa0=\xa0{tex}\\frac { 1 } { a \\left( a ^ { 2 } + b ^ { 2 } \\right) a - \\left( a ^ { 2 } + b ^ { 2 } \\right) b \\times b }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { x } { - 2 a b ^ { 2 } + a ^ { 3 } + b ^ { 2 } a }{/tex}\xa0=\xa0{tex}\\frac { y } { - a ^ { 2 } b - b ^ { 3 } + 2 a ^ { 2 } b }{/tex}\xa0=\xa0{tex}\\frac { 1 } { \\left( a ^ { 2 } + b ^ { 2 } \\right) a ^ { 2 } - \\left( a ^ { 2 } + b ^ { 2 } \\right) b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { x } { a ^ { 3 } - a b ^ { 2 } }{/tex}=\xa0{tex}\\frac { y } { a ^ { 2 } b - b ^ { 3 } }{/tex}\xa0=\xa0{tex}\\frac { 1 } { \\left( a ^ { 2 } + b ^ { 2 } \\right) \\left( a ^ { 2 } - b ^ { 2 } \\right) }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac{x}{a}{/tex}\xa0=\xa0{tex}\\frac{y}{b}{/tex}\xa0=\xa0{tex}\\frac { 1 } { a ^ { 2 } + b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac{x}{a}{/tex}\xa0=\xa0{tex}\\frac { 1 } { a ^ { 2 } + b ^ { 2 } }{/tex}\xa0and y =\xa0{tex}\\frac { 1 } { a ^ { 2 } + b ^ { 2 } }{/tex}{tex}\\Rightarrow{/tex}x =\xa0{tex}\\frac { a } { a ^ { 2 } + b ^ { 2 } }{/tex}\xa0and y =\xa0{tex}\\frac { b } { a ^ { 2 } + b ^ { 2 } }{/tex}
26165.

1+sinA-cosA/1+sinA+cosA ..=tanA/2

Answer» (1+sinA)2-2(1+sinA)cosA+(cosA)2/(1+sinA)2-(cos)2
26166.

real numbers class 10

Answer»
26167.

Cross multiplication method

Answer» It\'s soooooooooo easiest method we can use it in any complicated questions even
It\'s so easy
26168.

Why have not mathematics in hindi langue

Answer»
26169.

QPR is a right triangle right angled at Q If QS=SR then show that PR×PR=4PS×PS-3PQ×PQ?

Answer» Given: PQR is a right Triangle, right-angled at QAlso QS = SRTo prove:- {tex}P{R^2} = 4P{S^2} - 3P{Q^2}{/tex}Proof:- In right-angled triangle PQR right angled at Q.{tex}P{R^2} = P{Q^2} + Q{R^2}{/tex}[By Pythagoras theorem] ....(i)Also {tex}QS = {1 \\over 2}QR{/tex} [QS=SR] .....(ii)In right-angled triangle PQS, right angled at Q.PS2 = PQ2 + QS2{tex}\\Rightarrow {/tex}{tex}P{S^2} = P{Q^2} + {\\left( {\\frac{1}{2}QR} \\right)^2}{/tex} [From (ii)]{tex}\\Rightarrow {/tex} 4PS2 = 4PQ2 + QR2 .....(iii)From (i) and (iii), we getPR2 = PQ2 + 4PS2 - 4PQ2{tex}\\Rightarrow {/tex} PR2 = 4PS2 - 3PQ2
26170.

Cos(A-B)=cosAsinB-sinACosB given and

Answer» When {tex}A= 45°\\ and\\ B = 30°{/tex}, then\xa0{tex}cos(45° - 30°) = cos 45°.cos 30° + sin 45°.sin 30°{/tex}{tex}\\Rightarrow \\quad \\cos 15 ^ { \\circ }{/tex}{tex}= \\frac { 1 } { \\sqrt { 2 } } \\times \\frac { \\sqrt { 3 } } { 2 } + \\frac { 1 } { \\sqrt { 2 } } \\times \\frac { 1 } { 2 }{/tex}{tex}= \\frac { \\sqrt { 3 } } { 2 \\sqrt { 2 } } + \\frac { 1 } { 2 \\sqrt { 2 } }{/tex}{tex}= \\frac { \\sqrt { 3 } + 1 } { 2 \\sqrt { 2 } }{/tex}{tex}= \\frac { ( \\sqrt { 3 } + 1 ) \\times \\sqrt { 2 } } { 2 \\sqrt { 2 } \\times \\sqrt { 2 } }{/tex}{tex}= \\frac { ( \\sqrt { 3 } + 1 ) \\sqrt { 2 } } { 4 }{/tex}
26171.

How to find missing frequency in which mode is given

Answer» if i had an ncrt with page no 274 ?i would have gazed at the formula and went asleep ?by doing ex 14.2?
26172.

(a+b) whole cube

Answer» Acube+Bcube+3ABsq.+3Asq.B
(a+b)(a²+b²-ab)
a cube + b cube + 3 ab ( a+b)
a cube + b cube +three a square b +three a b square
26173.

Are you mental

Answer» invaded i am real steel
I think so
NO
26174.

Find the value of: sin50 sin40 + cos40 cosec50

Answer» 2
26175.

If sum of first 7 terms of an AP is 49and that of 17 terms is 289 find the sum of the first n terms

Answer» Sn=n2(square of n)
(11+n)n
26176.

In figure op is equal to diameter of the circle . Prove that ABP is an equilateral triangle

Answer» Construction : Join A to Bwe have,OP = diameter{tex}\\Rightarrow {/tex}\xa0OQ + QP = diameter{tex}\\Rightarrow {/tex}\xa0Radius + QP = diameter{tex}\\Rightarrow {/tex}\xa0OQ - PQ = radiusThus OP is the hypotenuse of right angled\xa0{tex}\\triangle {/tex}AOPSo, In\xa0{tex}\\angle A O P , \\sin \\theta = \\frac { A O } { O P } = \\frac { 1 } { 2 }{/tex}\xa0{tex}\\theta = 30 ^ { \\circ }{/tex}Hence,\xa0{tex}\\angle A P B = 60 ^ { \\circ }{/tex}Now, In {tex}\\triangle A O P{/tex}AP = ABSo,\xa0{tex}\\angle P A B = \\angle P B A = 60 ^ { \\circ }{/tex}{tex}\\therefore \\triangle A P B{/tex} is an equilateral triangle.
26177.

For what value of K the system of linear equations 2x+5y=K,Kx+15y=18 has infinitely many solutions

Answer» 6
K = 6
26178.

What will be the sample space when 4 coins are tossed

Answer» WHEN 4 COINS ARE TOSSEDEACH COIN HAS 2 POSSIBILITIES EITHER HEAD OR TAIL\xa0SAMPLE SPACE IS DETERMINED BY = 2^4 = 2X2X2X2 = 16HHHH HHHT HHTH HHTT HTHH HTHT HTTH HTTT\xa0\xa0THHH THHT THTH THTT\xa0TTHH TTHT TTTH TTTT
16
26179.

10th class any

Answer» Yes
What do you want to ask
26180.

If a and b are the zeroes of the polynomial f(x)=x²-5x+k such that a-b=1,find the value of k

Answer» Can anyone help to understand
I didn\'t itIt is the example 13 of R.D.Sharma chapter polynomials
Solve in notebook
26181.

Sum of nth them formula

Answer» n/2 ( 2a + ( n-1)d) or n/2 ( a+l )
Nth term= n/2[2a+(n-1)d] or =n/2(a+l)
N/2 [2a+(n-1)d]
N/2(2a+(n-1)d)
N/2(a+(n-1)d)
26182.

Solve the quadratic question 4x2

Answer» ??
I am always correct ??
Hmm sorry.. darshana is correct
-1/2
2
26183.

Sec2+cosec2=sec2*cosec

Answer»
26184.

D, E and F are respectively the mid point of sides AB, BC and CA of Traingle abc..

Answer»
26185.

If 1 is a zeros of the polynomial ax²-3(a-1)x-1 then find the value of a

Answer» Ok np ..Make joke on me !!
Not negative just making mockery of you
Phir se ek aur negative comments ...?? i like it too
Bhai Charan sparsh karaao
Tbhi google se dekhte ho ??
Bihar
Ayush tum kaha pe rahate ho
Negative comments ...i like it ?
Methile ye ans ayush Ko pata hoga bada hoshiyar hai
1
26186.

find a quadratic polynomial whose sum of zeroes and product of zeroes are given below1/4, _1

Answer» 4XSquare -X-4
26187.

We want chapter wise blue print

Answer» See on google
26188.

Find the 12th term of AP with first term 9 and common difference 10.

Answer» 119
119
26189.

How to find the zeros of quadratic polynomial by completing the square method

Answer»
26190.

If (1+cos A)(1- cosA) = 3/4 ,find the value of secA

Answer» 2
26191.

What are composite number

Answer» The number which have more than 2 factors
Numbers which have factors more than two i.e. 1,itself and the other those no. r called composite numbers.
Eg 4 is composite number2 is prime number
Which has more than 1 factors
26192.

Prove that COSA - SINA +1/COSA+SINA-1=cosecA +cotA

Answer»
26193.

TanA/1-cotA+cotA /1-tanA=1+tanA+cotA=1+secAcosecA

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
26194.

How to find distinct quadratic roots

Answer» By using quadratic formula
Please send me the answer..
26195.

if sec thita.cos a = √3 and tan thita.cot a =√2 then find the value of tan thita and tan a ?

Answer»
26196.

If cosec A+cot A=m,show that m2-1/m2+1=cosA

Answer» Given: cosec A + cot A = m{tex}\\Rightarrow{/tex}\xa0(cosec A + cot A)2 = (m)2 \xa0[squaring both sides ]{tex}\\Rightarrow{/tex}\xa0cosec2A + cot2A + 2 cosec A cot A = m2\xa0\xa0.......(1)Now, LHS\xa0{tex}=\\frac{m^{2}-1}{m^{2}+1}{/tex}{tex}=\\frac{\\ cosec ^{2} A+\\cot ^{2} A+2 \\ cosec A \\cot A-1}{\\ cosec ^{2} A+\\cot ^{2} A+2 \\ cosce A \\cdot \\cot A+1}{/tex}. [ From (1) ]{tex}=\\frac{\\cot ^{2} A+\\cot ^{2} A+2 \\ cosec A \\cdot \\cot A}{\\ cosec ^{2} A+\\ cosec ^{2} A+2 \\ cosec A \\cdot \\cot A}{/tex} [Since, Cosec2A - Cot2A = 1]{tex}=\\frac{2 \\cot ^{2} A+2 \\ cosec A \\cot A}{2 \\ cosec ^{2} A+2 \\ cosec A \\cot A}{/tex}{tex}=\\frac{2 \\cot A(\\cot A+\\ cosec A)}{2 \\ cosec A(\\ cosec A+\\cot A)}{/tex}{tex}=\\frac{\\cot A}{cosec A}{/tex}{tex}=\\frac{\\frac{\\cos A}{\\sin A}}{\\frac{1}{\\sin A}}{/tex}{tex}=\\frac{\\cos A}{\\sin A} \\times \\frac{\\sin A}{1}{/tex}= cos A = RHSHence, Proved.
26197.

Cos theta minus sin theta is equal to cos theta + sin theta prove that

Answer»
26198.

sin A = 5/13 Find other trignomentric ratios

Answer» Since sinA = 5/13adjacent side =5 and hypotenuse = 13=> base = sqrt of 169-25implies base = 12therefore cos A = 12/13tanA=5/12 secA=13/12cosecA=13/5cotA=12/5
26199.

Find the x.

Answer»
26200.

ad is median of triangle abc the bisector of angle adb and angle adc at e and f

Answer» What to prove