Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26451.

Formula of minor segment

Answer» Area of circle-area of major secror sorry
Cirle-major sector
26452.

Two dairy owner Aand B

Answer»
26453.

Find the circumference of circle whose diameter is 55cm

Answer» 172.8
26454.

SinQ+cosQ=2

Answer»
26455.

State basic proportional theorem

Answer»
26456.

3/cos^2-3tan^2

Answer» 3
26457.

Theoram 10.1

Answer»
26458.

Find the no. To be added to the polynomial x2 -5x +4

Answer»
26459.

Find the quadratic polynomial while zeroes are √2+3 and √2-3

Answer»
26460.

√64

Answer» 8
26461.

x^2+2x-143 solve by factorisation

Answer» x²+2x-143
26462.

If cotø = 15/8 ,then ealuvate ( 2+2sinø)(1-sinø) /(1+cosø)(2-2cosø)

Answer» 8/15
26463.

Find the First term and next term AP is 9,15,21,27....

Answer» A1=9 and next term is 33
a1=9 , a2=15
26464.

If cosA_sinA equal to root 2sinA, prove that cosA+sinA equal to root2 sinA

Answer» CosA - SinA = √2sinA => CosA = sinA + √2sinA => sinA ( 1+ √2 )= CosA => SinA = CosA / (1 + √2 ) rationalise it and get the answer
26465.

Prove, a³+b³=(a+b)(a²+b²-ab)

Answer»
26466.

Mid point thoeom

Answer»
26467.

What was the population of Muslim in India in 2015 census

Answer» 138,188,240
26468.

Is -1 a term of an AP27,21,10.....-65?justify

Answer» Ans is no because we r getting n=(-43/3)so n can never be in - term
26469.

What is distance formulae

Answer» Under root (x2-x1)^2 + (y2-y1)^2
26470.

Evaluate: sinAcosA-sinAcos(90-A)cosA/sec(90-A)-cosAsin(90-A)sinA/cosec(90-A)

Answer» Answer is 0SinAcosA - sinAcos^2A/secA - cosAsin^2A/cosecA= SinAcosA - sinAcos^3A - cosAsin^3A=SinAcosA(1- cos^2A - sin^2A)=SinAcosA(0)=0
26471.

What is the full form of ADP ??

Answer» ***adenosine
Adenosene di phosphate
Adenosine diphosphate
Anedosine di phosphate
26472.

Value of cos 90

Answer» Hey it\'s 0..
0
26473.

N/2 =2a +n-1*d proof the statement

Answer»
26474.

In fig find perimeter of DEFG

Answer»
26475.

Mx+ny=m+n find the value of x and y m(1/m-n -1/m+n)x +N(1/n-m - 1/m+n)y=2m/m+n

Answer»
26476.

Which is best way for revision??

Answer»
26477.

Find value of k for which one root for quadratic equation kx2-14x+8=0 is six times the other

Answer» Take one root =¥ and other 6¥ and u can use ¥+6¥ = -b/a formukae
26478.

What is the probability that a leap year has 53 Sundays?

Answer» 2/7
26479.

tan 30 sec 45 + tan 60 sec 30

Answer» Root 6+6/3
√3+9/3
1/underroot3*underroot 2+underroot 3 *2/underroot 3=2+underroot 2/3
26480.

How to prove trigonometry identity

Answer»
26481.

Exam date Aa gai kya?

Answer»
26482.

What is the meaning of Trigonometry

Answer» Trikonmiti
26483.

Is everything in mathematics come from NCERT.

Answer» No...u have to use extrabooks
26484.

Solve √(2x+9) +x=13

Answer» (2x+9)=(13-x)^2 - --->(2x+9)=169+ x^2-26x - - - - >0=160+x^2-28x - - - >0=x^2-28x+160 - - - >0=x^2-20x-8x+160 - - \'>0=x(x-20) - 8(x-20) - -\' >(x-8)(x-20) - - - >x=8,20.
26485.

If alpha and bita are zeroes of x*x-6x+k.What is the value of k, if 3alpha-2bita =20?

Answer» sum of zeroes=a+b =-b/a=6 a=6-b {given -> 3a-2b=20} 3*(6-b)-2b=20 - - - >18-3b-2b=20 - - - > -5b=2 - - - >b=-2/5 - - - > a=32/5 - - ->product of zeroes =a*b=k {32/5*(-2/5)=k) - - \'>k= - 64/25.
26486.

What is pythagorous thearem

Answer» H^2=B^2+P^2
Square of hypotenuse is equal to sum of square of perpendicular and base
In right angled triangle, H^2= P^2+ B^2
Study it from ncert
Hypotenuse square=base square+perpetual square
26487.

In the figure given find ‹QSR

Answer» Given: PQ and PR are tangents to a circle with centre O and {tex}\\angle{/tex}QPR = 50°.To find: {tex}\\angle{/tex}QSR{tex}\\angle{/tex}QOR + {tex}\\angle{/tex}{tex}QPR = 180°{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\angle{/tex}{tex}QOR + 50° = 180°{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\angle{/tex}{tex}QOR = 130°{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\angle{/tex}QSR = {tex}\\frac {1} {2}{/tex}\xa0{tex}\\angle{/tex}QOR{tex}\\Rightarrow{/tex}\xa0{tex}\\angle{/tex}QSR = {tex}\\frac {1} {2}{/tex}\xa0{tex}\\times{/tex}\xa0{tex}130° = 65°{/tex}
26488.

solution of course study material of KV Pinjore maths

Answer»
26489.

Is 7×5×3×2+3 a composite number ? Justify your answer

Answer»
26490.

Find the value of k for which the quadratic equation (k-2)x + 2(2k-3) + (5k-6) =0 have equal roots

Answer» In quadratic equation, (k - 2)x2 + 2(2k - 3)x +\xa04(5k - 6) = 0a = (k-2) , b = 2(2k-3) , c = 4(5k-6)Since equation has equal roots,{tex}\\therefore {/tex}\xa0D = 0{tex}b ^ { 2 } - 4 a c = 0{/tex}{tex}\\{ 2 ( 2 k - 3 ) \\} ^ { 2 } - 4 ( k - 2 ) ( 5 k - 6 ) = 0{/tex}\xa0{tex}4 \\left( 4 k ^ { 2 } - 12 k + 9 \\right) - 4 ( k - 2 ) ( 5 k - 6 ) = 0{/tex}\xa0{tex}4 k ^ { 2 } - 12 k + 9 - 5 k ^ { 2 } + 6 k + 10 k - 12 = 0{/tex}\xa0{tex}k ^ { 2 } - 4 k + 3 = 0{/tex}\xa0{tex}k ^ { 2 } - 3 k - k + 3 = 0{/tex}{tex}k(k-3)-1(k-3)=0{/tex}\xa0{tex}(k-1)(k-3) =0{/tex}{tex}\\therefore k=1 \\ or \\ k=3{/tex}
26491.

X+a/x-a + x+b/x-b + x+c/x-c=3 solve for x

Answer»
26492.

Board exams kab se hai?

Answer» Nhi nikla
26493.

Example of sabadrup

Answer»
26494.

Define sabadrup....with example

Answer»
26495.

Which term is the first negetive term in the AP= 22,19,16,...

Answer» 9th
9th ...that is -1
9th term
9the term
26496.

What formule applied in surface area and volume

Answer» Cuboid :- vol = lbh , surface area = 2[ lb + bh + lh ]
Cube :- vol = a³
26497.

Sino

Answer»
26498.

Pragya???

Answer»
26499.

How to form equations for speed related questions???

Answer»
26500.

If one of the zeros of quadratic polynomial (k-1)x² +Kx+1 is -3 then the value of k is ?

Answer» Given that the sum of the zeros of the polynomial kx2\xa0- 3x + 5 is 1, we have to find the value of k.We have, f(x) =\xa0kx2\xa0- 3x + 5Sum of zeros =\xa0{tex}\\frac { - \\left( \\text { coefficient of } x ^ { 2 } \\right) } { \\text { coefficient of } x } = \\frac { - ( - 3 ) } { k } = \\frac { 3 } { k }{/tex}Given, sum of zeros = 1{tex}\\therefore \\frac{3}{k}{/tex}\xa0= 1{tex}\\Rightarrow{/tex} k = 3