Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26501.

Determine the AP whose third term is 16 and 7th term exceeds the 5th term by 12.

Answer» Let the first term and the common difference of the AP be a and d respectively.Then,Third term = 16{tex} \\Rightarrow {/tex}\xa0a + (3 - 1)d = 16\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}{tex} \\Rightarrow {/tex}\xa0a + 2d = 16 ...... (1)and, 7th term = 5th term + 12{tex} \\Rightarrow {/tex}\xa0a + (7 - 1)d = a + (5 - 1)d + 12\xa0{tex}\\because {a_n} = a + (n - 1)d{/tex}{tex} \\Rightarrow {/tex}\xa0a + 6d = a + 4d + 12{tex} \\Rightarrow {/tex}\xa06d - 4d = 12{tex} \\Rightarrow {/tex}\xa02d = 12{tex} \\Rightarrow d = \\frac{{12}}{2} = 6{/tex}Put d = 6 in (1), we geta + 2(6) = 16{tex} \\Rightarrow {/tex}\xa0a + 12 = 16{tex} \\Rightarrow {/tex}\xa0a = 16 - 12{tex} \\Rightarrow {/tex}\xa0a = 4Hence, the required APs also4, 4 + 6, 4 + 6 + 6, 4 + 6 + 6 + 6, .......i.e. 4, 10, 16, 22, .......
26502.

Cos 45

Answer» Sorry its mistake ??
1/root2
1/root 2
Root3/2
26503.

What is the sum of all natural numbers ???

Answer»
26504.

Find the distance between the points P(a+b,a-b) and Q(a-b,a+b)

Answer» 8b sqare
26505.

Prove that the points (a,0),(0,b,(1,1)are collinear if 1/a+1/b=1

Answer» Since (a, 0), (0, b) and (1, 1) are collinearArea = 0{tex}\\frac{1}{2}\\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \\right] = 0{/tex}{tex} \\Rightarrow \\frac{1}{2}\\left[ {a(b - 1) + 0(1 - 0) +1 (0 - b)} \\right] = 0{/tex}{tex} \\Rightarrow {/tex}\xa0ab - a - b = 0{tex} \\Rightarrow {/tex}\xa0ab = a + bDividing by ab,{tex}\\frac{{ab}}{{ab}} = \\frac{a}{{ab}} + \\frac{b}{{ab}}{/tex}{tex}\\frac{1}{a} + \\frac{1}{b} = 1{/tex}
26506.

If tanA=ntanB nd sinA= msinB, then prove that cos^2=m^2-1/n^2-1.

Answer» Given,\xa0tan A = n tan B{tex} \\Rightarrow{/tex} tanB = {tex}\\frac{1}{n}{/tex}tan A{tex}\\Rightarrow{/tex}\xa0cotB =\xa0{tex}\\frac { n } { \\tan A }{/tex}..........(1)Also given,\xa0sin A = m sin B{tex}\\Rightarrow{/tex}\xa0sin B =\xa0{tex}\\frac{1}{m}{/tex}sin A{tex}\\Rightarrow{/tex}\xa0cosec B =\xa0{tex}\\frac { m } { \\sin A }{/tex}.....(2)We know that, cosec2B - cot2B = 1, hence from (1) & (2) :-{tex} \\quad \\frac { m ^ { 2 } } { \\sin ^ { 2 } A } - \\frac { n ^ { 2 } } { \\tan ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } } { \\sin ^ { 2 } A } - \\frac { n ^ { 2 } \\cos ^ { 2 } A } { \\sin ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } - n ^ { 2 } \\cos ^ { 2 } A } { \\sin ^ { 2 } A } = 1{/tex}{tex}\\Rightarrow{/tex}\xa0m2 - n2cos2A = sin2A{tex}\\Rightarrow{/tex}\xa0m2 - n2cos2A = 1 - cos2A{tex}\\Rightarrow{/tex}\xa0m2 - 1 = n2cos2A - cos2A{tex}\\Rightarrow{/tex}\xa0m2 - 1 = (n2 - 1) cos2A{tex}\\Rightarrow \\quad \\frac { m ^ { 2 } - 1 } { n ^ { 2 } - 1 } ={/tex}\xa0cos2A
26507.

The exam of board will come from ncert almost is it true?

Answer»
26508.

Is the triangle with side 12cm, 18cm a right triangle? Give reason

Answer» We know, sum of two sides is greater than third sideSo, given Sum of two sides = 6 + 12 cm = 18cmTherefore, measure of third side should be less than 18cm.
26509.

Defination of mean median mode

Answer»
26510.

Aaj time table release Hoga Ki Nahi

Answer» Bhai 10 tak
26511.

The area of circle is 301.84 cm2 find its circumference

Answer» We have,Area of circle = 301.84 cm2{tex}\\Rightarrow \\pi {r^2} = 301.84{/tex}{tex}\\Rightarrow \\frac{{22}}{7} \\times {r^2} = 301.84{/tex}{tex} \\Rightarrow {r^2} = \\frac{{301.84 \\times 7}}{{22}}{/tex}{tex} \\Rightarrow {r^2} = \\frac{{301.84 \\times 7}}{{22}}{/tex}{tex}\\Rightarrow {r^2} = \\frac{{1372 \\times 7}}{{100}}{/tex}{tex} \\Rightarrow r = \\sqrt {\\frac{{9604}}{{100}}} = \\frac{{98}}{{10}} = 9.8cm{/tex}{tex}\\therefore {/tex}\xa0circumference of circle =\xa0{tex} 2\\pi r{/tex}{tex} = 2 \\times \\frac{{22}}{7} \\times 9.8{/tex}= 61.6 cm
26512.

weight of 72 bags is 8kg how manysuch bags weight 20 kg

Answer» 180
26513.

Properties of a tangents

Answer» In a circle a line intersects at only one point.
26514.

A triangle ABC at b 90 and c tan =^3

Answer» Let ABC be a triangle right angled at C such that tan {tex}A = \\frac{1}{{\\sqrt 3 }}{/tex} and tan B ={tex}\\sqrt 3 {/tex}tan {tex}A = \\frac{1}{{\\sqrt 3 }}{/tex}{tex}\\Rightarrow {/tex}{tex}\\frac{{BC}}{{AC}} = \\frac{1}{{\\sqrt 3 }}{/tex}{tex}\\Rightarrow {/tex}{tex}\\frac{{BC}}{1} = \\frac{{AC}}{{\\sqrt 3 }} = k{/tex}(say)where k is a positive number{tex} \\Rightarrow \\left. \\begin{gathered} BC = k \\hfill \\\\ AC = \\sqrt 3 k \\hfill \\\\ \\end{gathered} \\right\\}{/tex}....(1){tex} \\Rightarrow \\frac{{AC}}{{BC}} = \\sqrt 3 {/tex}{tex} \\Rightarrow \\frac{{AC}}{{\\sqrt 3 }} = \\frac{{BC}}{1} = k(say){/tex}where k is a positive number{tex}\\left. \\begin{gathered} AC = \\sqrt 3 k \\hfill \\\\ BC = k \\hfill \\\\ \\end{gathered} \\right\\}{/tex} ...(2)From (1) and (2),AC ={tex}\\sqrt 3 k{/tex}BC = KIn {tex}\\vartriangle {/tex} ABC,{tex}\\because {/tex}{tex}\\angle{/tex} C={tex}{90^ \\circ }{/tex}{tex}\\therefore {/tex} AB2\xa0= AC2\xa0+ BC2 ...By Pythagoras theorem{tex}\\Rightarrow {/tex} AB2 = ({tex}\\sqrt 3 k{/tex})2\xa0+ (k)2{tex}\\Rightarrow {/tex} AB2 = 3k2\xa0+ k2{tex}\\Rightarrow {/tex} AB2\xa0= 4k2{tex}\\Rightarrow {/tex} AB =\xa0{tex}\\sqrt {4{k^2}} {/tex}{tex}\\Rightarrow {/tex} AB = 2kTherefore,sin A =\xa0{tex}\\frac{{BC}}{{AB}} = \\frac{k}{{2k}} = \\frac{1}{2}{/tex}cos B =\xa0{tex}\\frac{{BC}}{{AB}} = \\frac{k}{{2k}} = \\frac{1}{2}{/tex}cos A =\xa0{tex}\\frac{{AC}}{{AB}} = \\frac{{\\sqrt 3k }}{{2k}} = \\frac{{\\sqrt 3 }}{2}{/tex}sin B ={tex}\\frac{{AC}}{{AB}} = \\frac{{\\sqrt 3 k}}{{2k}} = \\frac{{\\sqrt 3 }}{2}{/tex}Now, sin A cos B + cos A sin B{tex}\\frac{1}{2}.\\frac{1}{2} + \\frac{{\\sqrt 3 }}{2}.\\frac{{\\sqrt 3 }}{2} = \\frac{1}{4} + \\frac{3}{4} = 1{/tex}
26515.

If x =9-80 then find X+1/x

Answer»
26516.

Find the four number in AP whose sum is 50 and in which the greatest number is 4 times the least.

Answer» Take no as (a-3d), (a-d), (a+d), (a+3d) nd sve
26517.

The nth term of an A.P is 3n+5 find its common difference?

Answer» 3
D=3
26518.

I have completed NCERT by hard and I want 70 marks out of 80 in class 10 is it enough

Answer» Ok I will follow this can u send me all sample papers of math my number is 8218867053
26519.

If 2 is divisible by 5 then find remainder

Answer» Quotient :- 0.4 nd remainders :- 0
26520.

Defferent between mandelevs periodic table and modern periodic table?

Answer» Devil ...plz check !! U r wrong
Mandeleev use the concept of reactivity if elements with oxygen
Sorry meendleve used atomic mass
Mostbasic diff is meelev table uses atomic no whereas mordern table uses atom8c no
Esy bt long ....
26521.

(x+1)÷x whole sq.X=2, 1÷x=4

Answer»
26522.

kisi pe maths ka board ka blue print aaya kya

Answer»
26523.

√sec€-1/sec€+1 + √sec€+1/sec€-1 =2cosec€

Answer» LHS ={tex}\\sqrt { \\frac { \\sec \\theta - 1 } { \\sec \\theta + 1 } } + \\sqrt { \\frac { \\sec \\theta + 1 } { \\sec \\theta - 1 } }{/tex}\xa0Rationalise the denominator and we get,\xa0{tex}= \\sqrt{\\frac{(sec\\theta-1)^2}{sec^2\\theta-1}}+ \\sqrt{\\frac{(sec\\theta+1)^2}{sec^2\\theta-1}}{/tex}=\xa0{tex}\\frac { ( \\sec \\theta - 1 ) + ( \\sec \\theta + 1 ) } { \\sqrt { ( \\sec \\theta + 1 ) ( \\sec \\theta - 1 ) } }{/tex}=\xa0{tex}\\frac { 2 \\sec \\theta } { \\sqrt { \\sec ^ { 2 } \\theta -1 } } = \\frac { 2 \\sec \\theta } { \\sqrt { \\tan ^ { 2 } \\theta } } = \\frac { 2 \\sec \\theta } { \\tan \\theta }{/tex}=\xa0{tex}2 \\times \\frac { 1 } { \\cos \\theta } \\times \\frac { \\cos \\theta } { \\sin \\theta }{/tex}=\xa0{tex}2 \\times \\frac { 1 } { \\sin \\theta }{/tex}= 2 cosec{tex}\\theta{/tex}= RHSHence Proved
26524.

The values of trigonometric ratios for angles0, 30,45,60,and90

Answer» Given in ncert
26525.

i have an doubt in completing square method

Answer»
26526.

Write cos theta in terms of cos square_6447

Answer»
26527.

What is the value of tanA+tanB+tanC

Answer»
26528.

How to find median

Answer» The median is also the number that is halfway into the set.
26529.

Upper limit lower limit statistics

Answer» Which has the highest frequency is the modal class........
26530.

All formula of chapter circle

Answer» Check formulae in revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html
26531.

What is bit coin

Answer» Cryptocurrency and world wide payment
26532.

Construct tangents to a circle of radius 4cm inclined at an angle of45

Answer» Steps of Construction:\tDraw a circle with centre O and radius = 4 cm.\tDraw any radius OA.\tDraw another radius OB such that {tex}\\angle{/tex}AOB = 180° - 45° = 135°\tAt point A draw AP {tex}\\bot{/tex}\xa0OA.\tAt point B draw BR {tex}\\bot{/tex} OB, intersecting AP at C. AC and BC are required tangents.
26533.

WhT is division algorithm

Answer» Euclid\'s division algorithm is a technique to compute the (HCF) of two given positive integers
26534.

12-61

Answer» _49
26535.

Datesheet of all paper of 10 class when ?

Answer» Check datesheet here :\xa0https://mycbseguide.com/cbse-datesheet.html
26536.

Any body can tell me when an equation called an \'identity\'? (very important)

Answer» when there r a number of roots more than the degree of the polynomial .
26537.

Date sheet 10th

Answer» Check datesheet here :\xa0https://mycbseguide.com/cbse-datesheet.html
26538.

Prove that :-SinA +(1+tan A)+cot A (1+cot A)=sec A +cosec A

Answer»
26539.

About chemotropism

Answer»
26540.

When will CBSE release class 10th datesheet

Answer»
26541.

If p is the HCF of 45 and 27 , find a and b such that p= 27a+45b

Answer» 45 = 27 {tex} \\times {/tex}\xa01 + 1827 =18 {tex} \\times {/tex}\xa01 + 918 = 9 {tex} \\times {/tex}\xa02 + 0So H.C.F. =9Now 9 = 27 – 18 {tex} \\times {/tex}\xa01{tex}\\style{font-family:Arial}{\\begin{array}{l}9=27-18\\\\=27-(45-27\\times1)\\times1\\\\=27-45+27\\\\=2\\times27-(1)\\times45=27x+45y\\end{array}}{/tex}⇒ a\xa0= 2, b\xa0= – 1.
26542.

16x-10/x=27 find natural roots

Answer» X=2;-5/16
26543.

In fig ST parallel to QR where PS =3 cm SR=4cm find ratio of area of triangle PST to triangle PRQ

Answer» Correct ayush
Bhai yaha figure wala question nahi ban pauega ....sorry ???
26544.

In an equilateral triangle ABC, D is a point on side BC such that BD=1/3BC. Proove that 9AD²=7AB².

Answer» Bina diagram nhi hoga
26545.

If sinθ= cosθ so let find theθ

Answer»
26546.

When an equation is called \'identity\'?

Answer» Identity equations are equations that are true no matter what value is plugged in for the variable. If you simplify an identity equation, you\'ll ALWAYS get a true statement.
26547.

How we can prove the converse of BPT

Answer»
26548.

Cosec6-cot6 = 1+ 3 cot2+3cot4

Answer»
26549.

If 13 cos A-5=0, evaluate 5sin A - 2cos A/ tan A

Answer»
26550.

If the radiys

Answer»