Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26551.

A 6 cm cube is cut into 1cm cubes . Calculate the total surface area of all small cube\'s

Answer» TSA =6*1*1=6cm squareBy anurag patil 9901881381-ph no
26552.

Is practical is needed for class 10th

Answer» Yes
Yes
26553.

Time table kab aayega

Answer» CBSE has not conformed . For my guess Cbse released date sheet tommorow 8th january
26554.

Please tell me theorems of triangles all wit their complete solution???

Answer»
26555.

If tan^2 A =1+2tan^B, prove that 2sin^2 A=1+sin^B.

Answer»
26556.

Given a, b, c, l, m, are in AP then find the value of a-4b+6c-4l+m.

Answer» 2
26557.

2+2/2 =????

Answer» 2.5 or 5/2
3.. So difficult.. Almost sweating
2
26558.

Blue print of maths

Answer»
26559.

Activity :to obtain the formula for area of pie r square by paper cutting and pasting method

Answer»
26560.

Ap is 12,24,36

Answer» d=24-12=12
26561.

Find the curved surface area of cone whose radius is 7cm and slant height is 15cm

Answer»
26562.

If AP= 2/3,K.,K5/8 Then find thee value of K

Answer»
26563.

Probilitu

Answer»
26564.

2-2,

Answer» Error
0
26565.

Which term of the a. P 3,7,11,15,........,is 91

Answer» 23rd
Tumhe formula put karke karna padega a+(n-1)d a=3,d=7-3=4,an=91
26566.

What is the value of 2sintheta..

Answer» 30 degree
Only theta
26567.

ImMature love says that I love u bcoz I need u but mature love says that I need u BC oz I love u

Answer»
26568.

If HCF (a,*b)-12 and ab-1800 ,then find LCM (a,b)

Answer» HCF(a, b)\xa0{tex}\\times{/tex}\xa0LCM(a, b) = a\xa0{tex}\\times{/tex}\xa0b{tex}\\Rightarrow{/tex}12\xa0{tex}\\times{/tex}\xa0LCM(a, b) = 1,800{tex}\\Rightarrow{/tex}\xa0LCM(a, b) =\xa0{tex}\\frac{1,800}{12}{/tex}\xa0= 150
26569.

(Sin A + secA)^2 + (cosA + cosecA)^2 = ( 1+ secA×cosecA )^2

Answer»
26570.

The perimeter of a triangle is 60cm. It\'s hypotenuse is 25cm. Find tha area of tha triangle

Answer» 150m2
26571.

Value tan 60

Answer» Root 3
26572.

tan5×tan30×tan85

Answer»
26573.

2tangent segment PA are drawn to a circlevwith center at O angle APB=120 prove that OP=2AP

Answer» A circle C(O, r). PA and PB are tangents to the circle from point P, outside the circle such that {tex}\\angle{/tex}APB = 120°.Construction: Join OA and OB.\xa0Proof. Consider {tex}\\triangle{/tex}{tex}PAO \\ and\\ \\triangle PBO\xa0{/tex}{tex}PA = PB{/tex}\xa0[Tangents drawn from a point to circle are equal]{tex} OP = OP{/tex}[Common]{tex}\\angle{/tex}OAP = {tex}\\angle{/tex}OBP = 90°{tex}\\therefore{/tex}{tex}\\triangle{/tex}OAP\xa0{tex}\\cong{/tex}{tex}\\triangle{/tex}OBP [by SAS cong.]{tex}\\therefore{/tex}{tex}\\angle{/tex}OPA =\xa0{tex}\\angle{/tex}OPB = {tex}\\frac { 1 } { 2 } \\angle \\mathrm { APB } = \\frac { 1 } { 2 } \\times 120 ^ { \\circ } = 60 ^ { \\circ }{/tex}In right angled {tex}\\triangle{/tex}OAP, {tex}\\frac { \\mathrm { AP } } { \\mathrm { OP } }{/tex}= cos 60° = {tex}\\frac {1}{2}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}OP = 2AP.{/tex}
26574.

How 1 degree is equal to 60 min

Answer» In latitude longitude scale as it is the time taken to go from 1 degree to other
26575.

Is it enough to solve only ncert question in trigno or should do extra q for exam

Answer» If I solve some step of trigno q correctly. Could I get some marks?
You have to practice more and more and have to do extra also
Keep Concept & u can solve ane qstn
26576.

find area of tringle by(1,-4),(3. -2),(-3,16)

Answer» 24
Esy yr ..use formulae and directly get ans
26577.

Which term of the following A. P is - 1 14,11,18,,,,,

Answer» Not AP
26578.

Can two number have 15 as their HAD and 175 as their LCM ? Give reason.

Answer» {tex}\\frac{175}{15}=11.667{/tex}Hence 175 is not divisible by 15But LCM of two numbers should be divisible by their HCF.{tex}\\therefore{/tex}\xa0Two numbers cannot have their HCF as 15 and LCM as 175.
26579.

Find the coordinates of the point on y axis which is nearest to the point (-2,5).

Answer» The point on y-axis that is nearest to the point(-2,5) is (0,5).
26580.

tanA/1-cotA + cotA/1-tanA = 1+secA.cosecA

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
26581.

Three equal circles, each of radius 6 cm, touch one another.find the area enclosed between them.

Answer» Let A, B, C, be the centres of these circles. Joint AB, BC, CA. Radius of each circle = 6cm . AB = BC = CA = 12 cm .Then,ABC is an equilateral triangle.Then, Area of ∆ABC,{tex}=\\frac{\\sqrt3}{4}×(side)^2\\\\ =\\frac{\\sqrt 3}{4}×(12)^2\\\\ =\\frac{\\sqrt 3}{4}×(12)×(12)\\\\ =36×1.73=62.28{/tex}Area of sector of angle 60° and radius 6 cm{tex}=\\frac{\\theta}{360}×πr^2\\\\{/tex}{tex} =\\frac{60}{360}×3.14×6×6\\ cm^2=18.84\\ cm^2{/tex}Required area = Area of ∆ABC- 3 ×area of one sector {tex}{/tex}\xa0{tex}{/tex}{tex}{/tex}=62.28-3× 18.84{tex}{/tex} =(62.28- 56.52) cm{tex}^2{/tex}{tex}{/tex}=5.76 cm{tex}^2{/tex}{tex}{/tex}Area of shaded region = 5.76 cm2
26582.

Solve for x:9x²-9(a+b)x+(2a²+5ab+2b²)=0

Answer» x = 2a+b/3 & a+2b/3
26583.

Find the value of sin30.cos60

Answer» 1/4
1/2
26584.

X-3÷x+3-x+3÷x-3=48÷7

Answer» {tex}\\Rightarrow{/tex}{tex}(x - 3)(x - 3) - (x + 3)(x + 3) = \\frac{48}{7}(x + 3)(x - 3){/tex} [Multiplying both sides by (x + 3)(x -3)]{tex}\\Rightarrow{/tex}{tex}x^2 + 9 - 6x - [x^2 + 9 + 6x] ={/tex}{tex}\\frac{{48}}{7}{/tex}{tex}[(x^2 - 9)]{/tex}{tex}\\Rightarrow{/tex}{tex}x^2 + 9 - 6x - x^2 - 9 - 6x ={/tex}{tex}\\frac{{48}}{7}{/tex}{tex}(x^2 - 9){/tex}{tex}\\Rightarrow - 12x = \\frac{{48}}{7}({x^2} - 9){/tex}{tex} \\Rightarrow - 12x \\times 7 = 48({x^2} - 9){/tex} [Multiplying both sides by 7]{tex}\\Rightarrow - 7x = \\frac{{48}}{{12}}({x^2} - 9){/tex} [Dividing both sides by 12]{tex}\\Rightarrow{/tex}{tex}-7x = 4(x^2 - 9){/tex}{tex}\\Rightarrow{/tex}{tex} -7x = 4x^2 - 36{/tex}{tex}\\Rightarrow{/tex}{tex}4x^2 + 7x - 36 = 0{/tex}In order to factorize 4x2 + 7x - 36, we have to find two numbers \'a\' and \'b\' such that.a + b = 7 and a {tex}\\times {/tex} b = 4 {tex}\\times{/tex} (-36) = -144Clearly, 16 + (-9) = 7 and (16) {tex}\\times{/tex} (-9) = -144{tex}\\therefore{/tex} a = 16 and b = -9Now,4x2 + 7x - 36 = 0{tex}\\Rightarrow{/tex} 4x2 + 16x - 9x - 36 = 0{tex}\\Rightarrow{/tex} 4x(x + 4) - 9(x + 4) = 0{tex}\\Rightarrow{/tex} (x + 4)(4x - 9) = 0{tex}\\Rightarrow{/tex} x + 4 = 0 or 4x - 9 = 0{tex}\\Rightarrow{/tex} x = -4 or {tex}x = \\frac{9}{4}{/tex}Hence, the required roots of given equation are -4 and\xa0{tex}\\frac{{9}}{4}{/tex}
26585.

How the statistics formula make of mode

Answer»
26586.

2x/3+4-6=7

Answer»
26587.

When will 2018 exam datesheet for class 10 release ??

Answer»
26588.

Find root of equation 16x-10/x=27

Answer»
26589.

Board exam question will came from this??

Answer»
26590.

agar hama kisi die koa 2 baar phekte hi toa total outcomes Ketna hoga

Answer» 36
12/2
36
26591.

Show that exactly one of the numbers n,n+2,n+4 is divided by 3

Answer»
26592.

if two lines intersects at right angles then the product of their slope is...

Answer»
26593.

Show thatany positive odd integer is of the form of 6p+1 or 6p+5 where p is some integer

Answer»
26594.

If sinA +sin2A=1,then evaluate cos2A+cos4A

Answer»
26595.

Find the middle term of A.P 6, 13,20,........216????

Answer» Here,{tex} a = 6, l =216, d = 13 - 6 = 7{/tex}Let the number of terms be n{tex}l = a + ( n - 1) d{/tex}216 = {tex}6 + (n -1)(7){/tex}216 -6 = {tex}7(n - 1){/tex}{tex}7(n - 1){/tex}= 210{tex}n - 1{/tex}=\xa0{tex}\\frac { 210 } { 7 }{/tex}= 30{tex}n{/tex} = 30 + 1 = 31The middle term will be =\xa0{tex}\\frac { 31 + 1 } { 2 }{/tex}= 16th term{tex}\\therefore{/tex}a16\xa0= 6 +(16 - 1)(7){tex}= 6 + 15 \\times 7{/tex}= 6 + 105= 111Middle term will be 111.
26596.

What is nth term

Answer» Sry yar i m very confused in
Sorry aksh it last term of ap given
26597.

Solve 2 (ax-by) + a + 4b=02 (ax-ay) + b- 4a = 0

Answer» The given equations may be written as2(ax - by) + (a + 4b) = 02ax - 2by + (a + 4b) = 02ax - 2by = - a - 4 b ... (i)and 2(bx + ay) + (b - 4a) = 0(2bx + 2ay) + (b - 4a) = 02bx + 2ay = 4a - b. ... (ii)Multiplying (i) by a and (ii) by b and adding, we get(2a2+ 2b2) x = (-a2\xa0- b2){tex} \\Rightarrow 2 \\left( a ^ { 2 } + b ^ { 2 } \\right) x = - \\left( a ^ { 2 } + b ^ { 2 } \\right) {/tex}{tex}\\Rightarrow x = \\frac { - 1 } { 2 }{/tex}Putting x = -{tex}\\frac 12{/tex}\xa0in (i), we get{tex}2 a \\times \\left( \\frac { - 1 } { 2 } \\right) - 2 b y = - a - 4 b{/tex}{tex}\\Rightarrow \\quad - a - 2 b y = - a - 4 b{/tex}{tex}\\Rightarrow \\quad 2 b y = 4 b {/tex}{tex}\\Rightarrow y = \\frac { 4 b } { 2 b } = 2{/tex}Hence, x =\xa0{tex}\\frac{-1}{2}{/tex} and y = 2
26598.

If A=15\' ; verify that 4Sin2A .cos6A=1.

Answer»
26599.

abcd is a rectangle in which diagonal bd bisect

Answer» Given: A rectangle ABCD in which diagonal BD bisects {tex}\\angle B{/tex}.\xa0To prove: ABCD is a square.Proof: DC||AB [{tex}\\because{/tex} Opposite sides of a rectangle are parallel]{tex}\\Rightarrow \\;\\angle 4 = \\angle 1{/tex}\xa0..(1) [Alternate interior angles]Similarly,\xa0{tex}\\angle 3 = \\angle 2{/tex} …(2) [Alternate interior angles]And {tex}\\angle 1 = \\angle 2{/tex}…(3) [Given]From equation (1), (2) and (3), we get{tex}\\angle 3 = \\angle 4{/tex}In\xa0{tex}\\Delta BDA{/tex} and\xa0{tex}\\Delta BDC{/tex}, we have{tex}\\angle 1 = \\angle 2{/tex}\xa0[Given]BD = BD [Common side]{tex}\\angle 3 = \\angle 4{/tex}\xa0[proved above]So, By ASA criterion of congruence, we have{tex}\\Delta BDA \\cong \\Delta BDC{/tex}\xa0{tex}\\therefore{/tex} AB = BC [CPCT]So, ABCD is a square.Hence, proved.
26600.

Weightage of each chapter for exam 2018

Answer» Check marking scheme in the syllabus :\xa0https://mycbseguide.com/cbse-syllabus.html