Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26651.

If a cosA+b sinA=c ‚then prove that asinA-bcosA=±√a^2+b^2-c^2

Answer» We have, {tex}asin\\theta+bcos\\theta=c{/tex}On squaring both sides, we get{tex}(asin\\theta+bcos\\theta)^2=c^2{/tex}(a sin θ)2\xa0+ (b cos θ)2\xa0+ 2(a sin θ) (b cos θ) = c2⇒ a2\xa0sin2\xa0θ + b2\xa0cos2\xa0θ + 2ab sin θ cos θ = c2⇒ a2(1 – cos2\xa0θ) + b2\xa0(1 – sin2\xa0θ) + 2 ab sin θ cos θ = c2 {tex}[\\because sin^2\\theta+cos^2\\theta=1]{/tex}⇒ a2\xa0– a2\xa0cos2\xa0θ + b2\xa0– b2\xa0sin2\xa0θ + 2ab sin θ cos θ = c2⇒ –a2\xa0cos2\xa0θ – b2\xa0sin2\xa0θ + 2ab sin θ cos θ = c2\xa0– a2\xa0– b2 Taking Negative common,⇒ a2\xa0cos2\xa0θ + b2\xa0sin2\xa0θ – 2ab sin θ cos θ = a2\xa0+ b2\xa0– c2⇒ (a cos θ)2\xa0+ (b sin θ)2\xa0– 2(a cos θ) (b sin θ) = a2\xa0+ b2\xa0– c2⇒ {tex}(acos\\theta-bsin\\theta)^2=a^2+b^2-c^2{/tex}⇒{tex}acos\\theta-bsin\\theta{/tex} =\xa0{tex}\\pm \\sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } }{/tex}\xa0Hence proved, {tex}acos\\theta-bsin\\theta{/tex} =\xa0{tex}\\sqrt{a^2+b^2-c^2}{/tex}
26652.

Derivation of CSA and TSA of frustrum of a cone

Answer» Refer ti rd sharma
26653.

If sinA+cosA

Answer»
26654.

which term of tha AP :3,15,27....will be 132 more than its 54th term?

Answer» Here, first term = a = 3 and common difference = d = 15 – 3 = 12Let nth term of the given AP be 132 more than its 54th term, thenan = a54 + 132⇒ a + (n – 1)d = a + (54 – 1)d + 132⇒ (n – 1) d = (54 – 1)d + 132⇒(n – 1) 12 = (53)12 + 132⇒(n – 1) 12 = 768⇒(n – 1) = 64⇒ n = 65Hence, the 65th term will be 132 more than the 54th term.
26655.

When exam date list will be declare

Answer» 10 January
26656.

Find mode if mean 54 and median 33

Answer» Abxd
2mean + mode = 3median Mode = -9
26657.

Find largest number that divide 789, 861, 1069 leaving reminders 7, 11, 15 respectively

Answer»
26658.

if cosecA + cotA =p then prove that cosA = p×p-1/p×p+1

Answer» Given, cosec θ + cot θ = p...(i)We know that, {tex}cosec^2\\theta-cot^2\\theta=1{/tex}{tex}\\Rightarrow (cosec\\theta+cot\\theta)(cosec\\theta-cot\\theta)=1{/tex}{tex}\\Rightarrow p(cosec\\theta-cot\\theta)=1{/tex}{tex}\\Rightarrow cosec\\theta-cot\\theta=\\frac 1p{/tex}\xa0....(ii)Adding i and ii, we get{tex}2cosec\\theta=p+ \\frac 1p{/tex}{tex}cosec\\theta=\\frac{p^2+1}{2p}{/tex}{tex}\\Rightarrow sin\\theta= \\frac{1}{cosec\\theta}=\\frac{2p}{p^2+1}{/tex}We know that,{tex}cos\\theta=\\sqrt{1-sin^2\\theta}=\\sqrt{1- \\frac{4p^2}{(p^2+1)^2}}=\\sqrt{\\frac{p^4+1-2p^2}{(p^2+1)^2}}{/tex}{tex}cos\\theta=\\sqrt{\\frac{(p^2-1)^2}{(p^2+1)^2}}=\\frac{p^2-1}{p^2+1} {/tex}
26659.

Hey gyss yaha par 2 Akshita hain

Answer»
26660.

Vivek kahan gye

Answer»
26661.

The ratio between the volumes of two sphere is 8:27 ? What is the ratio between their surface area?

Answer» 4:9 will be the ratio of their surface area!
26662.

Can anyone explain Thales theorem

Answer» Without figure ...impossible & here figure ....impossible
26663.

Yha abhishek rai kaun hai???

Answer»
26664.

The rain water from a roof of 44 m x 20 m drains int

Answer» Length of the roof (l) = 44 m,Breadth of the roof (b) = 20 mLet the height of the water on the roof be h m.Volume of water falling on the roof = l{tex}\\times{/tex}b{tex}\\times{/tex}h= 44{tex}\\times{/tex}20{tex}\\times{/tex}h= 880hRadius of the cylindrical vessel\xa0{tex}( R ) = \\frac { 4 } { 2 } = 2 m{/tex}Height of the water in the cylindrical vessel (H) = 3.5 mVolume of the water in the cylindrical vessel =\xa0{tex}\\pi R ^ { 2 } H{/tex}{tex}= \\frac { 22 } { 7 } \\times 2 \\times 2 \\times 3.5{/tex}{tex}= \\frac { 308 } { 7 }{/tex}= 44Volume of water falling on the roof = Volume of the water in the cylindrical vessel{tex}\\Rightarrow{/tex}\xa0880 h = 44{tex}\\Rightarrow h = \\frac { 44 } { 880 }{/tex}{tex}\\Rightarrow h = \\frac { 44 } { 880 } \\times 100{/tex}{tex}\\Rightarrow{/tex}\xa0h = 5 cm{tex}\\Rightarrow{/tex}\xa0Height of the water on the roof is 5 cm.
26665.

RIMSHA......,....

Answer»
26666.

9586486×546558

Answer» Stupid ???
26667.

Please provide me the slot of previous 10 year question paper of class 10 for board exam

Answer» You can check last year papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
26668.

PQRS is a parallelogram with PQ SQUARE + QR SQUARE=170 and PR=12 then find QS

Answer»
26669.

(Cosec teta -cot teta)2 =1-cos teta ÷1+cos teta

Answer» LHS\xa0{tex}= \\frac{{1 - \\cos A}}{{1 + \\cos A}}{/tex}Multiplying numerator and denominator by 1 - cos A{tex}= \\frac{{(1 - \\cos A)(1 - \\cos A)}}{{(1 + \\cos A)(1 - \\cos A)}}{/tex}{tex}= \\frac{{{{(1 - \\cos A)}^2}}}{{1 - {{\\cos }^2}A}}{/tex}\xa0{tex} \\left[ {\\because (a + b)(a - b) = {a^2} - {b^2}} \\right]{/tex}{tex}= \\frac{{{{(1 - \\cos A)}^2}}}{{{{\\sin }^2}A}}{/tex}\xa0{tex} \\left[ {\\because 1 - {{\\cos }^2}A = {{\\sin }^2}A} \\right]{/tex}{tex}= {\\left( {\\frac{{1 - \\cos A}}{{\\sin A}}} \\right)^2}{/tex}{tex}= {\\left( {\\frac{1}{{\\sin A}} - \\frac{{\\cos A}}{{\\sin A}}} \\right)^2}{/tex}{tex}= {(\\cos ecA - \\cot A)^2}{/tex}\xa0{tex} \\left[ {\\because \\frac{1}{{\\sin A}} = \\cos ec\\;A,\\frac{{\\cos A}}{{\\sin A}} = \\cot A} \\right]{/tex}{tex}= {\\left[ { - 1(\\cot A - \\cos ecA)} \\right]^2}{/tex}= (cot A - cosec A)2Hence proved.
26670.

Koi maths ka blue print de do plz

Answer»
26671.

Prove that tan^2A-tan^2B=cos^2B-cos^2A/cos^2Bcos^2A

Answer»
26672.

If tanA=tanB than prove that A-B=90°

Answer» This question is wrong
26673.

If tanA = 2cosA then prove that cos²A +cot²A = 2secA

Answer»
26674.

Board paper solution

Answer»
26675.

Board questions paper of class 10 of2013

Answer»
26676.

If the HCF of 85 and 153 is expressible in the form of 85m-153,then find the value of m?

Answer» M=2
26677.

Find 11th term from the last term of an ap 27,23,19,............-65

Answer» -25
-25
25
26678.

If a,b,c are in A.P ,then show that {a(bc)}/bc,{b(ca)}/ca and {c(ab)/ab are also in A.P

Answer» abc/bc=a , bca/ca=bc , cab/ab = c
26679.

In triangle PQR,right angle at Q PR+QR=25 and PQ=5cm. Prove that sinP+tanA P=5

Answer» {tex}\\frac{{216}}{{65}}{/tex}
26680.

Show that one and only one out of n,n+2,n+4 are divisible by 3 ,where n is any positive integer

Answer» Esy h bt yha type krna muskil
26681.

Show that one and only one out of n,n+2 or n+4 is divisible by 3 , where n is any positive integer

Answer» Plz
Write in short ..?
Esy h bt yha type krna muskil ?????
26682.

If the ratio of the sum of first n terms of 2 AP\'s is 7n+1: 4n+27 find the ratio of first m terms

Answer» Let a, and A be the first terms and d and D be the common difference of two A.PsThen, according to the question,{tex}\\frac { S _ { n } } { S _ { n } ^ { \\prime } } = \\frac { \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \\frac { n } { 2 } [ 2 A + ( n - 1 ) D ] } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,\xa0{tex}\\frac { 2 a + ( n - 1 ) d } { 2 A + ( n - 1 ) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}or,{tex}\\frac { a + \\left( \\frac { n - 1 } { 2 } \\right) d } { A + \\left( \\frac { n - 1 } { 2 } \\right) D } = \\frac { 7 n + 1 } { 4 n + 27 }{/tex}Putting,\xa0{tex}\\frac { n - 1 } { 2 } = m - 1{/tex}{tex}n-1 = 2m - 2{/tex}{tex}n= 2m - 2 + 1{/tex}or, {tex}n = 2m - 1{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 7 ( 2 m - 1 ) + 1 } { 4 ( 2 m - 1 ) + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 7 + 1 } { 8 m - 4 + 27 }{/tex}{tex}\\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}Hence,\xa0{tex}\\frac { a _ { m } } { A _ { m } } = \\frac { 14 m - 6 } { 8 m + 23 }{/tex}
26683.

Find the value of x in tan3x= sin 45 degree*cos45degree+ sin 30 degree

Answer» tan3x=1/√2*1/√2+1/2. ( by using trigonometry table). tan3x=1/2+1/2. tan3x =1. tan3x=tan45. 3x=45. x = 15 degree
26684.

1+4+7+...X =207 find value of X

Answer» Given, a = 1, d = 4 -1 = 3.Let number of terms in the series be n.{tex}\\therefore \\quad S _ { n } = \\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}{tex}\\therefore \\quad \\frac { n } { 2 } [ 2 \\times 1 + ( n - 1 ) 3 ] = 287{/tex}or,\xa0{tex}\\frac { n } { 2 } [ 2 + ( 3 n - 3 ) ] = 287{/tex}or, {tex}n [3n - 1] = 574{/tex}or, {tex}3n^2- n - 574 = 0{/tex}{tex}3n^2 - n - 574 = 0{/tex}{tex}3n(n - 14) - 41(n - 14) = 0{/tex}{tex}(n - 14)(3n - 41) = 0{/tex}n - 14 = 0 or 3n - 41 = 0n = 14 or 3n = 41The 14th term is x.{tex}\\therefore{/tex}\xa0{tex}a + (n - 1)d = x{/tex}1 + 13\xa0{tex}\\times{/tex}\xa03 = x{tex}1 + 39 = x{/tex}x = 40
26685.

If cosecø-sinø=a3Set-cosø=b3Then,,prove that:a2b2(a2+b2)=1

Answer»
26686.

find the largest number that will divide 398,436 & 542 leaving remainder 7,11 &15 respectively

Answer» The largest positive integer that will divide 398, 436 and 542 leaving reminders 7, 11 and 15 respectively is the HCF of the numbers (398 – 7), (436 – 11) and (542 – 15) i.e. 391, 425 and 527.HCF of 391,425 and 527:HCF of 425 and 391:425 = 391 × 1 + 34391 = 34 × 11 + 1734 = 17 ×2 + 0HCF of 425 and 391 = 17527 = 17 × 31Similarly, HCF of 17 and 527 = 17So, HCF of (391,425 ,527) = 17∴ Required number is 17.
26687.

GivenTanA=nTanBSinA=mSinBProveCos(square)A=m(square)-1/n(square)-1

Answer»
26688.

49 ka whole square kya ha

Answer» 2401
So stupid ???
26689.

2 marks

Answer»
26690.

How many we gets when we multiple 2188 by10096?

Answer» 22090048
26691.

What is euclid division lemmma

Answer» Abe chup be
a=bq+r
EDL
26692.

Who is single likee in this group

Answer» Aur hai its first time so I leave u......
It is not Teri maa Sajan it is your mother
Teri maa
26693.

Is there Anyone who know the value of sin 18°

Answer» Kya hai..
Yes
26694.

X²+6x-(a²+2a-8)=0

Answer» The given equation is\xa0{tex}x^2\xa0+\xa06x -\xa0(a^2 +\xa02a - 8) = 0{/tex}Comparing it with {tex}Ax^2\xa0+ Bx +C = 0,{/tex} we get{tex}A = 1,\\ B = 6\\\xa0and\\ C = -(a^2 +\xa02a - 8){/tex}{tex}\\therefore{/tex}\xa0{tex}D =B^2\xa0- 4AC ={/tex} (6)2\xa0- 4(1)(-(a2 +\xa02a - 8))= 36 +4a2\xa0+ 8a - 32= 4a2\xa0+ 8a\xa0+\xa04 = 4(a2\xa0+ 2a + 1) = 4(a + 1)2\xa0> 0So, the given equation has real roots, given by{tex}\\alpha = \\frac { - B + \\sqrt { D } } { 2 A } = \\frac { - 6 + \\sqrt { 4 ( a + 1 ) ^ { 2 } } } { 2 \\times 1 } = \\frac { - 6 + 2 ( a + 1 ) } { 2 }{/tex}\xa0{tex}= -3 + (a + 1) = a - 2{/tex}{tex}\\beta = \\frac { - B - \\sqrt { D } } { 2 A } = \\frac { - 6 - \\sqrt { 4 ( a + 1 ) ^ { 2 } } } { 2 \\times 1 } = \\frac { - 6 - 2 ( a + 1 ) } { 2 }{/tex}\xa0{tex}= -3 - (a + 1) = -a - 4 = -(a + 4){/tex}Hence,\xa0(a - 2)\xa0and -(a + 4)\xa0are the roots of the given equation.
26695.

What is mensuration cycle ?

Answer» When egg is not fertilized then it is shed off through endometrial wall every month.
26696.

Find the number of terms (i)- 7,13,19....,205

Answer» 34
So easy ??
26697.

If 1/x+2,1/x+3 and 1/x+5 are in A.P. find the value of x

Answer» Equation will be come in quadratic form
So easy ??
26698.

find quardratic equation whose zeroes-4÷5&1÷3

Answer» 15xka square -17x +4
So easy ??
26699.

If tan A=√2-1,prove that tan A/1+tan A×tan A=√2/4.

Answer» So easy ??
26700.

Date sheet for cbse class 10th examination

Answer» It will be release most probably this week