Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26701.

What is the latin name of percentage?

Answer» Per centum
Per centum
26702.

The circumference of a circle is 154 then find its radius?

Answer» 24.5 cm ya m ab jisame bhi ho ..
26703.

Polynomial, 4u+8

Answer» U=0 or U= --2
26704.

Find the quadratic polynomial the sum and product of whose zeroes are -3 and 2

Answer» (x+3)(x-2)
X square + 3x + 2
X square+3X+2
26705.

If the zeros of polynomial x square -3xsquare+x+1are a-b, a, a+b,find a and b

Answer» a=1 and b=+ -√2
x square h ya x cube
26706.

I ask proof for in a rational number p/q, q is the form of 2^m*2^n then it is terminating decimal.

Answer»
26707.

Evaluate 0.68bar+0.73bar

Answer» 1.42 bar
26708.

Find the area of quadrant of circle whose circumference is 22 CM use Pi is equal to 22 by 7

Answer» Circumference SE radius niklega Fir area k formula pr rakho answer mil jayega
35.2 cm ^2
26709.

m=cosec-sin n=sec-tan then prove that (m•2n)•2/3+(mn`2)•2/3

Answer» We have,cosec{tex}\\theta{/tex}\xa0- sin{tex}\\theta{/tex}\xa0= m and sec{tex}\\theta{/tex}\xa0- cos{tex}\\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 } { \\sin \\theta } - \\sin \\theta = m \\text { and } \\frac { 1 } { \\cos \\theta } - \\cos \\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 - \\sin ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { 1 - \\cos ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\therefore \\quad \\left( m ^ { 2 } n \\right) ^ { 2 / 3 } + \\left( m n ^ { 2 } \\right) ^ { 2 / 3 } = \\left( \\frac { \\cos ^ { 4 } \\theta } { \\sin ^ { 2 } \\theta } \\times \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } \\right) ^ { 2 / 3 } + \\left( \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } \\times \\frac { \\sin ^ { 4 } \\theta } { \\cos ^ { 2 } \\theta } \\right) ^ { 2 / 3 }{/tex}= (cos3{tex}\\theta{/tex})2/3\xa0+ (sin3{tex}\\theta{/tex})2/3\xa0= cos2{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}\xa0= 1Hence, (m2n)2/3 + (mn2)2/3 = 1
26710.

Na2so4

Answer» Sodium Sulphate
Sodium sulphate
26711.

What is formula to find term from last of ap

Answer» There is no formula but the answer you will get when you will take a the last term and common differenve negative and just put in simple formula i.e a+(n-1)d.
26712.

when is an equation called ans identity???

Answer» If two expressions are equal for all the values of same parameter or parameters , then the statement of equality between the two expressions is called an identity.
26713.

Find the value of k so that the following system of equation has no solution 3x-y-5k,6x-2y-k=0

Answer» Given system of equations is ,3x\xa0- y - 5 = 0 and 6x - 2y -\xa0k = 0Here a1\xa0=\xa03, b1= -1, c1 = -5 and a2 = 6, b2 = -2, c2 = - kFor no solution\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}\xa0{tex}\\implies{/tex}\xa0{tex}\\frac{3}{6}{/tex}\xa0=\xa0{tex}\\frac{1}{2}{/tex}\xa0{tex}\\ne{/tex}\xa0{tex}\\frac{-5}{-k}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1}{2}{/tex}\xa0{tex}\\ne{/tex}\xa0{tex}\\frac{5}{k}{/tex}{tex}\\implies{/tex}k\xa0{tex}\\ne{/tex}\xa010
26714.

If the diameter of a wheel is 1.26 m what will be the distance covered in 500 revolution

Answer» 1980m^2
26715.

find the distance b/w 2 parallel tangent of a wide of radius 6 cm

Answer» It\'s 10 yrr
12 cm
26716.

RIMSHA see I\'m waiting yrr plzz

Answer»
26717.

RIMSHA plzz yrr come now

Answer»
26718.

If p and q are two prime nos. Then what will be LCM and HCF ????

Answer» LCM = products of no. So, LCM =pqHCF= products of no. / LCM = pq/pq =1 So (LCM= pq )and ( HCF= 1)
26719.

7x-12y=138x-13y=14

Answer»
26720.

7x-4y=9 (1) 8x-10y=11

Answer»
26721.

CBSE class 10 area related to circle ex 12.3 question no :-8

Answer»
26722.

(1-3)

Answer» -2
-2
26723.

2x+x+2 find the root

Answer»
26724.

If tan theta + cot theta =2 then find sin^15 theta + cos^45theta

Answer»
26725.

Why 20 is a composite number

Answer» It has more than 2 factors
26726.

A die is thrown once. Find the probability if getting a non negative integer

Answer» 6/6=1
3/6= 1/2
26727.

Formulas of all chapter class 10 maths

Answer» Get fromulae in revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html
26728.

What\'s the weightage for class 10 maths upcoming 2018 board exams??

Answer» You can check marking scheme in syllabus :\xa0https://mycbseguide.com/cbse-syllabus.html
26729.

If csecA-cotA=q show that q²-1÷q²+1+cosa=0

Answer»
26730.

Hlo pragya

Answer»
26731.

Proof Pythagoras theorem

Answer» Haa hii haa
26732.

Which term of the progression20,18,16........is the first nagative term

Answer» Answer is 10
12 gai shi
Nhi ho skta i can bet
Cant be 10
12
May be -24
26733.

If ratios of. Sum of n terms of two aps is given then what is the ratios of their n terms ?

Answer»
26734.

Prove that √p + √q is an irrational number

Answer» Suppose that {tex} \\sqrt { p } + \\sqrt { q }{/tex} is a rational number equal to {tex} \\frac { a } { b }{/tex}, where a and b are integers having no common factor.Now,\xa0{tex} \\sqrt { p } + \\sqrt { q } = \\frac { a } { b }{/tex}{tex} \\Rightarrow \\sqrt { p } = \\frac { a } { b } - \\sqrt { q }{/tex} (squaring both side){tex} \\Rightarrow \\quad ( \\sqrt { p } ) ^ { 2 } = \\left( \\frac { a } { b } - \\sqrt { q } \\right) ^ { 2 }{/tex}{tex} \\Rightarrow \\quad p = \\frac { a ^ { 2 } } { b ^ { 2 } } - 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } + q{/tex}{tex} \\Rightarrow \\quad 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } = \\frac { a ^ { 2 } } { b ^ { 2 } } + q - p{/tex}{tex} \\Rightarrow \\quad 2 \\frac { a } { b } \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { b ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { 2 a b }{/tex}{tex} \\Rightarrow \\sqrt { q }{/tex}\xa0is a rational number. (because sum of two rational numbers is always rational)This is a contradiction as\xa0{tex} \\sqrt { q }{/tex}\xa0is an irrational number.Hence,\xa0{tex} \\sqrt { p } + \\sqrt { q }{/tex}\xa0is an irrational number.
26735.

If sum of first Nth term is 4n-nSquare then find an

Answer» 5-2n
26736.

If a=4q+r then what are the values that r can take

Answer»
26737.

Find sum of 17 term of Ap whose nth term is 7_4n

Answer» 7_4????
510
17/2(2*4+(17-1)-5)
26738.

Show that square of Any positive integer cannot be of the form 6m +2 or 6m +5 for any integer m

Answer» Let a be the positive integer and b = 6.Then, by Euclid’s algorithm, a = 6q + r for some integer q ≥ 0 and r = 0, 1, 2, 3, 4, 5 because 0 ≤ r < 5.So,\xa0a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5.(6q)2 = 36q2 = 6(6q2)= 6m, where m is any integer.(6q + 1)2 = 36q2 + 12q + 1= 6(6q2 + 2q) + 1= 6m + 1, where m is any integer.(6q + 2)2 = 36q2 + 24q + 4= 6(6q2 + 4q) + 4= 6m + 4, where m is any integer.(6q + 3)2 = 36q2 + 36q + 9= 6(6q2 + 6q + 1) + 3= 6m + 3, where m is any integer.(6q + 4)2 = 36q2 + 48q + 16= 6(6q2 + 7q + 2) + 4= 6m + 4, where m is any integer.(6q + 5)2 = 36q2 + 60q + 25= 6(6q2 + 10q + 4) + 1= 6m + 1, where m is any integer.Hence, The square of any positive integer is of the form 6m, 6m + 1, 6m + 3, 6m + 4 and cannot be of the form 6m + 2 or 6m + 5 for any integer m.
26739.

Formula of trigonometry

Answer» Get them in revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html
26740.

Hloooo?

Answer»
26741.

2x+3-6x

Answer»
26742.

Basic proportionality theorem

Answer» If a line is drawn parallel to one of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
26743.

Give the smallest composite number

Answer» It\'s not 1
1
26744.

What is the nine consecutive numbers starting with 2778?

Answer»
26745.

If 5th term of an A.P.is 0 show that 33rd term is 2 times its 19th term

Answer»
26746.

44+85

Answer» 125
26747.

RIMSHA HLO DEAR

Answer»
26748.

SinA × SinA + CosA ×CosA =1

Answer» Sin A * Sin A === Sin^2 A...................... Cos A * Cos A === Cos^2 A....... Sin^2 A + Cos^2 A===1. ...... By identity
26749.

16x-10/x=27 find roots

Answer»
26750.

If tan theta =a -b / a+b. Find the value of sin theta.

Answer» a-b/underroot a²+b²