Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 26701. |
What is the latin name of percentage? |
|
Answer» Per centum Per centum |
|
| 26702. |
The circumference of a circle is 154 then find its radius? |
| Answer» 24.5 cm ya m ab jisame bhi ho .. | |
| 26703. |
Polynomial, 4u+8 |
| Answer» U=0 or U= --2 | |
| 26704. |
Find the quadratic polynomial the sum and product of whose zeroes are -3 and 2 |
|
Answer» (x+3)(x-2) X square + 3x + 2 X square+3X+2 |
|
| 26705. |
If the zeros of polynomial x square -3xsquare+x+1are a-b, a, a+b,find a and b |
|
Answer» a=1 and b=+ -√2 x square h ya x cube |
|
| 26706. |
I ask proof for in a rational number p/q, q is the form of 2^m*2^n then it is terminating decimal. |
| Answer» | |
| 26707. |
Evaluate 0.68bar+0.73bar |
| Answer» 1.42 bar | |
| 26708. |
Find the area of quadrant of circle whose circumference is 22 CM use Pi is equal to 22 by 7 |
|
Answer» Circumference SE radius niklega Fir area k formula pr rakho answer mil jayega 35.2 cm ^2 |
|
| 26709. |
m=cosec-sin n=sec-tan then prove that (m•2n)•2/3+(mn`2)•2/3 |
| Answer» We have,cosec{tex}\\theta{/tex}\xa0- sin{tex}\\theta{/tex}\xa0= m and sec{tex}\\theta{/tex}\xa0- cos{tex}\\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 } { \\sin \\theta } - \\sin \\theta = m \\text { and } \\frac { 1 } { \\cos \\theta } - \\cos \\theta{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { 1 - \\sin ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { 1 - \\cos ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\Rightarrow \\quad \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } = m \\text { and } \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta }{/tex}\xa0= n{tex}\\therefore \\quad \\left( m ^ { 2 } n \\right) ^ { 2 / 3 } + \\left( m n ^ { 2 } \\right) ^ { 2 / 3 } = \\left( \\frac { \\cos ^ { 4 } \\theta } { \\sin ^ { 2 } \\theta } \\times \\frac { \\sin ^ { 2 } \\theta } { \\cos \\theta } \\right) ^ { 2 / 3 } + \\left( \\frac { \\cos ^ { 2 } \\theta } { \\sin \\theta } \\times \\frac { \\sin ^ { 4 } \\theta } { \\cos ^ { 2 } \\theta } \\right) ^ { 2 / 3 }{/tex}= (cos3{tex}\\theta{/tex})2/3\xa0+ (sin3{tex}\\theta{/tex})2/3\xa0= cos2{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}\xa0= 1Hence, (m2n)2/3 + (mn2)2/3 = 1 | |
| 26710. |
Na2so4 |
|
Answer» Sodium Sulphate Sodium sulphate |
|
| 26711. |
What is formula to find term from last of ap |
| Answer» There is no formula but the answer you will get when you will take a the last term and common differenve negative and just put in simple formula i.e a+(n-1)d. | |
| 26712. |
when is an equation called ans identity??? |
| Answer» If two expressions are equal for all the values of same parameter or parameters , then the statement of equality between the two expressions is called an identity. | |
| 26713. |
Find the value of k so that the following system of equation has no solution 3x-y-5k,6x-2y-k=0 |
| Answer» Given system of equations is ,3x\xa0- y - 5 = 0 and 6x - 2y -\xa0k = 0Here a1\xa0=\xa03, b1= -1, c1 = -5 and a2 = 6, b2 = -2, c2 = - kFor no solution\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}\xa0{tex}\\implies{/tex}\xa0{tex}\\frac{3}{6}{/tex}\xa0=\xa0{tex}\\frac{1}{2}{/tex}\xa0{tex}\\ne{/tex}\xa0{tex}\\frac{-5}{-k}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1}{2}{/tex}\xa0{tex}\\ne{/tex}\xa0{tex}\\frac{5}{k}{/tex}{tex}\\implies{/tex}k\xa0{tex}\\ne{/tex}\xa010 | |
| 26714. |
If the diameter of a wheel is 1.26 m what will be the distance covered in 500 revolution |
| Answer» 1980m^2 | |
| 26715. |
find the distance b/w 2 parallel tangent of a wide of radius 6 cm |
|
Answer» It\'s 10 yrr 12 cm |
|
| 26716. |
RIMSHA see I\'m waiting yrr plzz |
| Answer» | |
| 26717. |
RIMSHA plzz yrr come now |
| Answer» | |
| 26718. |
If p and q are two prime nos. Then what will be LCM and HCF ???? |
| Answer» LCM = products of no. So, LCM =pqHCF= products of no. / LCM = pq/pq =1 So (LCM= pq )and ( HCF= 1) | |
| 26719. |
7x-12y=138x-13y=14 |
| Answer» | |
| 26720. |
7x-4y=9 (1) 8x-10y=11 |
| Answer» | |
| 26721. |
CBSE class 10 area related to circle ex 12.3 question no :-8 |
| Answer» | |
| 26722. |
(1-3) |
|
Answer» -2 -2 |
|
| 26723. |
2x+x+2 find the root |
| Answer» | |
| 26724. |
If tan theta + cot theta =2 then find sin^15 theta + cos^45theta |
| Answer» | |
| 26725. |
Why 20 is a composite number |
| Answer» It has more than 2 factors | |
| 26726. |
A die is thrown once. Find the probability if getting a non negative integer |
|
Answer» 6/6=1 3/6= 1/2 |
|
| 26727. |
Formulas of all chapter class 10 maths |
| Answer» Get fromulae in revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html | |
| 26728. |
What\'s the weightage for class 10 maths upcoming 2018 board exams?? |
| Answer» You can check marking scheme in syllabus :\xa0https://mycbseguide.com/cbse-syllabus.html | |
| 26729. |
If csecA-cotA=q show that q²-1÷q²+1+cosa=0 |
| Answer» | |
| 26730. |
Hlo pragya |
| Answer» | |
| 26731. |
Proof Pythagoras theorem |
| Answer» Haa hii haa | |
| 26732. |
Which term of the progression20,18,16........is the first nagative term |
|
Answer» Answer is 10 12 gai shi Nhi ho skta i can bet Cant be 10 12 May be -24 |
|
| 26733. |
If ratios of. Sum of n terms of two aps is given then what is the ratios of their n terms ? |
| Answer» | |
| 26734. |
Prove that √p + √q is an irrational number |
| Answer» Suppose that {tex} \\sqrt { p } + \\sqrt { q }{/tex} is a rational number equal to {tex} \\frac { a } { b }{/tex}, where a and b are integers having no common factor.Now,\xa0{tex} \\sqrt { p } + \\sqrt { q } = \\frac { a } { b }{/tex}{tex} \\Rightarrow \\sqrt { p } = \\frac { a } { b } - \\sqrt { q }{/tex} (squaring both side){tex} \\Rightarrow \\quad ( \\sqrt { p } ) ^ { 2 } = \\left( \\frac { a } { b } - \\sqrt { q } \\right) ^ { 2 }{/tex}{tex} \\Rightarrow \\quad p = \\frac { a ^ { 2 } } { b ^ { 2 } } - 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } + q{/tex}{tex} \\Rightarrow \\quad 2 \\left( \\frac { a } { b } \\right) \\sqrt { q } = \\frac { a ^ { 2 } } { b ^ { 2 } } + q - p{/tex}{tex} \\Rightarrow \\quad 2 \\frac { a } { b } \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { b ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\sqrt { q } = \\frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { 2 a b }{/tex}{tex} \\Rightarrow \\sqrt { q }{/tex}\xa0is a rational number. (because sum of two rational numbers is always rational)This is a contradiction as\xa0{tex} \\sqrt { q }{/tex}\xa0is an irrational number.Hence,\xa0{tex} \\sqrt { p } + \\sqrt { q }{/tex}\xa0is an irrational number. | |
| 26735. |
If sum of first Nth term is 4n-nSquare then find an |
| Answer» 5-2n | |
| 26736. |
If a=4q+r then what are the values that r can take |
| Answer» | |
| 26737. |
Find sum of 17 term of Ap whose nth term is 7_4n |
|
Answer» 7_4???? 510 17/2(2*4+(17-1)-5) |
|
| 26738. |
Show that square of Any positive integer cannot be of the form 6m +2 or 6m +5 for any integer m |
| Answer» Let a be the positive integer and b = 6.Then, by Euclid’s algorithm, a = 6q + r for some integer q ≥ 0 and r = 0, 1, 2, 3, 4, 5 because 0 ≤ r < 5.So,\xa0a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5.(6q)2 = 36q2 = 6(6q2)= 6m, where m is any integer.(6q + 1)2 = 36q2 + 12q + 1= 6(6q2 + 2q) + 1= 6m + 1, where m is any integer.(6q + 2)2 = 36q2 + 24q + 4= 6(6q2 + 4q) + 4= 6m + 4, where m is any integer.(6q + 3)2 = 36q2 + 36q + 9= 6(6q2 + 6q + 1) + 3= 6m + 3, where m is any integer.(6q + 4)2 = 36q2 + 48q + 16= 6(6q2 + 7q + 2) + 4= 6m + 4, where m is any integer.(6q + 5)2 = 36q2 + 60q + 25= 6(6q2 + 10q + 4) + 1= 6m + 1, where m is any integer.Hence, The square of any positive integer is of the form 6m, 6m + 1, 6m + 3, 6m + 4 and cannot be of the form 6m + 2 or 6m + 5 for any integer m. | |
| 26739. |
Formula of trigonometry |
| Answer» Get them in revision notes :\xa0https://mycbseguide.com/cbse-revision-notes.html | |
| 26740. |
Hloooo? |
| Answer» | |
| 26741. |
2x+3-6x |
| Answer» | |
| 26742. |
Basic proportionality theorem |
| Answer» If a line is drawn parallel to one of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. | |
| 26743. |
Give the smallest composite number |
|
Answer» It\'s not 1 1 |
|
| 26744. |
What is the nine consecutive numbers starting with 2778? |
| Answer» | |
| 26745. |
If 5th term of an A.P.is 0 show that 33rd term is 2 times its 19th term |
| Answer» | |
| 26746. |
44+85 |
| Answer» 125 | |
| 26747. |
RIMSHA HLO DEAR |
| Answer» | |
| 26748. |
SinA × SinA + CosA ×CosA =1 |
| Answer» Sin A * Sin A === Sin^2 A...................... Cos A * Cos A === Cos^2 A....... Sin^2 A + Cos^2 A===1. ...... By identity | |
| 26749. |
16x-10/x=27 find roots |
| Answer» | |
| 26750. |
If tan theta =a -b / a+b. Find the value of sin theta. |
| Answer» a-b/underroot a²+b² | |