Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

26951.

Value of cot45 degree

Answer» 1
1
26952.

If theeta is 90°

Answer» Bhai poraa ques.likho ye complete question nahi hai
No
Is zero is prime number
26953.

Please answer my question...

Answer» Bhai aapka question kya hai please tell me☺?
26954.

(1+cotA+tanA)(sinA - cosA)

Answer» L.H.S\xa0= (1 + cotA + tanA) (sinA - cosA)= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA{tex}= \\sin A - \\cos A + \\frac{{\\cos A}}{{\\sin A}} \\times \\sin A - \\cot A\\cos A + \\sin A\\;\\tan A - \\frac{{\\sin A}}{{\\cos A}} \\times \\cos A{/tex}= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA= sinA tanA - cotA cosA........(1)Now taking ;{tex}\\quad \\frac{{\\sec A}}{{\\cos e{c^2}A}} - \\frac{{\\cos ecA}}{{{{\\sec }^2}A}}{/tex}{tex} = \\frac{{\\frac{1}{{\\cos A}}}}{{\\frac{1}{{{{\\sin }^2}A}}}} - \\frac{{\\frac{1}{{\\sin A}}}}{{\\frac{1}{{{{\\cos }^2}A}}}}{/tex}{tex} = \\frac{{{{\\sin }^2}A}}{{\\cos A}} - \\frac{{{{\\cos }^2}A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\frac{{\\sin A}}{{\\cos A}} - \\cos A \\times \\frac{{\\cos A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\tan A - \\cos A \\times \\cot A{/tex}.......(2)From (1) & (2),(1 + cotA + tanA) (sinA - cosA) =\xa0{tex}\\frac { \\sec A } { cosec ^ { 2 } A } - \\frac { cosec A } { \\sec ^ { 2 } A }{/tex}\xa0= sinA.tanA - cosA.cotA\xa0Hence, Proved.
26955.

Find the value of k for which the given equation have real and equal roots :x²-2(k+1)x+k²

Answer» {tex}k = \\frac { - 1 } { 2 }{/tex}\xa0
26956.

Find a quadratic polynomial whose zero are 4+√5 and 4-√5

Answer» Let α=4\xa0-\xa0{tex}\\sqrt 5{/tex}and\xa0β = 4 +\xa0{tex}\\sqrt 5{/tex}Sum of zeroes,α+β = 4\xa0-\xa0{tex}\\sqrt 5{/tex}\xa0+ 4\xa0+\xa0{tex}\\sqrt 5{/tex}\xa0= 8αβ = (4\xa0-\xa0{tex}\\sqrt 5{/tex})(4 +\xa0{tex}\\sqrt 5{/tex}) = 16 - 5 = 11Quadratic polynomialp(x) = x2\xa0- (α+β)x +αβ= x2\xa0-\xa08x + 11
26957.

If d is HCF of 45 and 27 find x and y satisfying d=45x+28y

Answer» SIMILAR QUESTION:\xa0If d is the hcf of 45 and 27,find x and y satisfying d= 27x+45yThe numbers are :-45 and 27Lets find their HCFBY Euclid\'s division Lemma :-a = bq + r45 = 27 x 1 + 1827 = 18 x 1 + 918 = 9 x 2 + 0HCF = d = 9Given:-d = 27x+45y9 = 27x + 45y9 = 27 - 18 x 118 = 45 - 27 x 1\xa0Therefore ,9 = 27 - [ 45 x 27 x 1 ] x 1= 27 x 2 - 45\xa09 = 27 x 2 + 45 x [ -1 ]x = 2y = -1
26958.

Class 10 RS AGGARWAL new additionPg 59 question no 14 answer

Answer» 63737
26959.

Exercise 6.5 question no 2

Answer» PQR is a triangle right angled at P and M is a point on QR such that PM\xa0\xa0QR. Show that PM2\xa0= QM x MR.Ans. Given: PQR is a triangle right angles at P and PMQRTo Prove: PM2\xa0= QM.MRProof: Since PMQR\xa0QMPPMR\xa0\xa0
26960.

If Sin^2 A = SinA * CosA than A is equal to

Answer» Aaya mahatma ji ka answer aya?
45°
26961.

4u 4u square + 8 you

Answer» 4u2\xa0+ 8u = 04u(u + 2) = 0u = 0 or u = -2
26962.

Show the every positive odd integer is the form 4m+1 and 4m+3 where m is form of some integers

Answer» Step-by-step explanation:Taking q as some integer.Let a be the positive integer.And, b = 4 .Then by Euclid\'s division lemma,We can write a = 4q + r ,for some integer q and 0 ≤ r < 4 .°•° Then, possible values of r is 0, 1, 2, 3 .Taking r = 0 .a = 4q .\xa0Taking r = 1 .\xa0a = 4q + 1 .Taking r = 2a = 4q + 2 .Taking r = 3 .a = 4q + 3 .But a is an odd positive integer, so a can\'t be 4q , or 4q + 2 [ As these are even ] .•°• a can be of the form 4q + 1 or 4q + 3 for some integer q .Hence , it is solved
26963.

Show that n2-1 is divisible by8,if n is an odd positive integers

Answer» Are bhai n=4m+1or4m+2leke dekho ban jayega.
26964.

Evaluate cotA(90°-©)/sin©+cotA40°/tanA50°-cos2 20°+cos2+70°

Answer»
26965.

6 chapter

Answer»
26966.

For any positive integer n, proved that n×n×n_n is divisible by 6

Answer» n3\xa0- n = n (n2\xa0- 1) = n (n - 1) (n + 1)\xa0Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.If n = 3p, then n is divisible by 3.If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.⇒ n (n – 1) (n + 1) is divisible by 3.\xa0Similarly, whenever a number is divided by 2, the remainder obtained is 0 or 1.∴ n = 2q or 2q + 1, where q is some integer.If n = 2q, then n is divisible by 2.If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.⇒ n (n – 1) (n + 1) is divisible by 2.Since, n (n – 1) (n + 1) is divisible by 2 and 3.∴ n (n-1) (n+1) = n3\xa0- n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6)\xa0\xa0
26967.

4 ko 4 baar use krke ans 20 lao. ( +,-,/,X)

Answer»
26968.

Chapter-3. Exercise-3.3. Question 5

Answer» You can check NCERT Solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
26969.

Solve for x-1/1 +x-3/x-4=10/3;

Answer» X=2√2/3
26970.

√3x - √2 -√5

Answer»
26971.

Is R d sharma mathematics helpful for 10 th board exam

Answer» ?hmm
Ryt chetna ji ?
Welcome ji?
Thanks chetna
Yup....but firstly do ur NCERT if it\'s clear then u can move to RD
26972.

Anybody is there

Answer» Yess yrr
26973.

Hello dosto??

Answer» Hi
Hlow
26974.

2÷1÷2÷3

Answer» 3
0.333333333333333333Correct answer ☺️
26975.

If one zeroes of the quadratic polynomial (k-1) x^2+kx+1is -3, then find the value of k

Answer»
26976.

Koi bta skta h kya ki tumhare school me ncert book chl rhi hh ya RD sharma book math ki

Answer» Bro RD sharma ka maths S-Chand ke biology, chemistry, physics K.S Randhawa ke SST
26977.

Find the values of A and B so that x cube + x square + bx - 6 is divisible by x square - 4 x + 3.

Answer»
26978.

Chlo m chli ...byyy ...byyyy .... See u later ....tc ..??

Answer» ???????
Bbye..mai bhi ja rhi hun..gd nyt..tke care bestie???
26979.

Notes. Of chapter 14

Answer» Source of enargy
26980.

(Sin theta +sec theta)2 +(cosec theta + cos theta)2= (1+ sec theta + cosec theta)2

Answer» Plz answer it
Ashish just shut your mouth
Jisko aata ho usne v to nhi kiya
Runi yadav r u over smart.Ni aata to msg kyu kiya
Sry nhi ataNt main dekh lo???
Plzzz... answer it
26981.

9xx-9(a+b)x+(2aa+5ab+2bb)=0

Answer» D = b2 - 4ac{tex}= ( - 9 ( a + b ) ) ^ { 2 } - 4 \\times 9 \\times \\left( 2 a ^ { 2 } + 5 a b + 2 a b ^ { 2 } \\right){/tex}= 81(a + b)2 - 36(2a2 + 5ab + 2b2)= 9[9(a2 + b2 + 2ab - 8a2 - 20ab - 8b2)]= 9[a2 + b2 - 2ab]= 9(a - b)2{tex}x = \\frac { - b \\pm \\sqrt { D } } { 2 a } = \\frac { 9 ( a + b ) \\pm \\sqrt { 9 ( a - b ) ^ { 2 } } } { 2 \\times 9 }{/tex}{tex}{ \\Rightarrow x = 3 \\frac { [ 3 ( a + b ) \\pm ( a - b ) ] } { 2 \\times 9 } }{/tex}{tex}{ \\Rightarrow x = \\frac { ( 3 a + 3 b ) \\pm ( a - b ) } { 6 } }{/tex}{tex}\\Rightarrow x = \\frac { 3 a + 3 b + a - b } { 6 } \\text { or } x = \\frac { 3 a + 3 b - a + b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 4 a + 2 b } { 6 } \\text { or } x = \\frac { 2 a + 4 b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 2 a + b } { 3 } \\text { or } x = \\frac { a + 2 b } { 3 }{/tex}
26982.

Two no. Are in the ratio 9:5 if there lcm is 900 then find hcf

Answer»
26983.

Solve.2x+1/4-2x-3/6=7/3

Answer» answer
26984.

3×4

Answer» 12
12
12
12
26985.

Hi.....sets. Kr liye kisine

Answer» Maine commerce liya hai
26986.

points makes straight line or point is a part of straight line??

Answer» Point is a part of straight line
26987.

Find the HCF of 963 and 657 using euclids division lemma

Answer» Given numbers are 657 and 963 .Here, 657 < 963\xa0By using Euclid\'s Division algorithmm , we get963 = (657 × 1) + 306Here , remainder = 306 .So, On taking 657 as new dividend and 306 as the new divisor and then apply Euclid\'s Division lemma, we get657 = (306 × 2) + 45Here, remainder = 45\xa0So, On taking 306\xa0as new dividend and 45\xa0as the new divisor and then apply Euclid\'s Division lemma, we get306 = (45 × 6) + 36Here, remainder = 36So, On taking 45\xa0as new dividend and 36\xa0as the new divisor and then apply Euclid\'s Division lemma, we get45 = (36 × 1) + 9Here, remainder = 9So, On taking 36\xa0as new dividend and 9\xa0as the new divisor and then apply Euclid\'s Division lemma, we get36 = (9 × 4) + 0Here , remainder = 0 and last divisor is 9.\xa0Hence, HCF of 657 and 963 = 9.
26988.

X=7+4√3 , find √x + 1/√x

Answer» Hello
Hlo ? kaise ho?
Hmm ?
Just for tympass
Wah... Abhi bh maths
26989.

Hlo...hiiii

Answer» Hii
Hiii aman ....
Hlooo riya??
26990.

Factorise 2x square - 11 x + 15

Answer» 2x_5 or x_3
3, 2.5
26991.

1/2-1/2-1/2-x

Answer» 1(2-x)/2-1(2-1)=2-x/9
1(2-x)/2-1(2-1)2-x/9
26992.

I x=3 then x3 -7×6=0

Answer» Prove that the following are irrational1 1/√2Sir plz solve this question
26993.

What are the values of x and y in the linear equation 2x-2y=1

Answer»
26994.

Hlo .....

Answer» Hi
Hlo 789
Hi hi ....456...
Hlo..hlo.1,2,3?
26995.

Any one can help me in question

Answer» Ya
26996.

Short and simple defination of probability

Answer» Maybe or maybe not
26997.

(1)2x2-5root2+4=0. (2) 6x2+7x-10=0 by the method of completing the square

Answer»
26998.

Hiii...anyone on??

Answer» Yess i m
26999.

Find polynomial whose zero is 2root3 and 3root3

Answer» This is not answer
x2 - (5root3 )x + 18
27000.

Halo...halo?????

Answer» Hii bestie❤
Mst. ..aap btao..
Hola.... Kaise ho bestie