Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

27201.

Can you suggestme how can i get the 2019 2020 10th syllabus

Answer» www. cbse. nic. in
27202.

Find the zeros, the sum of zeros and the productof the zeros of the quadratic polynomial p(x)=3x-x-4

Answer» Sorry, I think the question is wrong
27203.

If a and b are two integers, show that root2 lies between a/b and a+2b/a+b

Answer» We do not know whether\xa0{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b } \\text { or, } \\frac { a } { b } > \\frac { a + 2 b } { a + b }{/tex}.Therefore, to compare these two numbers, let us compute\xa0{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b }{/tex}We have,{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b } = \\frac { a ( a + b ) - b ( a + 2 b ) } { b ( a + b ) }{/tex}\xa0{tex} = \\frac { a ^ { 2 } + a b - a b - 2 b ^ { 2 } } { b ( a + b ) } = \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) }{/tex}{tex} \\therefore \\quad \\frac { a } { b } - \\frac { a + 2 b } { a + b } > 0{/tex}{tex} \\Rightarrow \\quad \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } > 0{/tex}{tex} \\Rightarrow{/tex} a2 - 2b2 > 0{tex} \\Rightarrow{/tex} a2> 2b2{tex} \\Rightarrow \\quad a > \\sqrt { 2 } b{/tex}and,\xa0{tex} \\frac { a } { b } - \\frac { a + 2 b } { a + b } < 0{/tex}{tex} \\Rightarrow \\quad \\frac { a ^ { 2 } - 2 b ^ { 2 } } { b ( a + b ) } < 0{/tex}{tex} \\Rightarrow{/tex} a2 - 2b2 < 0{tex} \\Rightarrow{/tex}a2 <2b2{tex} \\Rightarrow \\quad a < \\sqrt { 2 } b{/tex}Thus,\xa0{tex} \\frac { a } { b } > \\frac { a + 2 b } { a + b }{/tex}, if\xa0{tex}a > \\sqrt { 2 b }{/tex}\xa0and\xa0{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b }{/tex},\xa0if\xa0{tex} a < \\sqrt { 2 } b{/tex}.So, we have the following cases:CASE I When\xa0{tex} a > \\sqrt { 2 } b{/tex}In this case, we have{tex} \\frac { a } { b } > \\frac { a + 2 b } { a + b } \\text { i.e., } \\frac { a + 2 b } { a + b } < \\frac { a } { b }{/tex}We have to prove that{tex} \\frac { a + 2 b } { a + b } < \\sqrt { 2 } < \\frac { a } { b }{/tex}We have,{tex} a > \\sqrt { 2 } b{/tex}{tex} \\Rightarrow{/tex} a2> 2b2 [Adding a2 on both sides]{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } > \\left( a ^ { 2 } + 2 b ^ { 2 } \\right) + 2 b ^ { 2 }{/tex}\xa0[Adding\xa02b2 on both sides]{tex} \\Rightarrow \\quad 2 \\left( a ^ { 2 } + b ^ { 2 } \\right) + 4 a b > a ^ { 2 } + 4 b ^ { 2 } + 4 a b{/tex}\xa0[Adding 4ab on both sides]{tex} \\Rightarrow \\quad 2 \\left( a ^ { 2 } + 2 a b + b ^ { 2 } \\right) > a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad 2 ( a + b ) ^ { 2 } > ( a + 2 b ) ^ { 2 }{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } ( a + b ) > a + 2 b{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } > \\frac { a + 2 b } { a + b }{/tex} ........(i)Again,{tex} a > \\sqrt { 2 } b {/tex}{tex}\\Rightarrow \\frac { a } { b } > \\sqrt { 2 }{/tex} .......(ii)From (i) and (ii), we get{tex} \\frac { a + 2 b } { a + b } < \\sqrt { 2 } < \\frac { a } { b }{/tex}CASE II When\xa0{tex} a < \\sqrt { 2 } b{/tex}In this case, we have{tex} \\frac { a } { b } < \\frac { a + 2 b } { a + b }{/tex}We have to show that\xa0{tex} \\frac { a } { b } < \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}We have,{tex} a < \\sqrt { 2 } b{/tex}{tex} \\Rightarrow \\quad a ^ { 2 } < 2 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad a ^ { 2 } + a ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }{/tex}\xa0[Adding a2 on both sides]{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 2 b ^ { 2 }+ 2 b ^ { 2 }{/tex}\xa0[Adding 2b2 on both sides]{tex}\\Rightarrow \\quad 2 a ^ { 2 } + 2 b ^ { 2 } < a ^ { 2 } + 4 b ^ { 2 }{/tex}{tex} \\Rightarrow \\quad 2 a ^ { 2 } + 4 a b + 2 b ^ { 2 } < a ^ { 2 } + 4 a b + 4 b ^ { 2 }{/tex}\xa0[Adding 4ab on both sides]{tex} \\Rightarrow \\quad 2 ( a + b ) ^ { 2 } < ( a + 2 b ) ^ { 2 }{/tex}{tex} \\Rightarrow \\sqrt { 2 } ( a + b ) < a + 2 b{/tex}{tex} \\Rightarrow \\quad \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}\xa0. ...(iii){tex} \\Rightarrow \\quad a < \\sqrt { 2 } b \\Rightarrow \\frac { a } { b } < \\sqrt { 2 }{/tex} ....(iv)From (iii) and (iv), we get{tex} \\frac { a } { b } < \\sqrt { 2 } < \\frac { a + 2 b } { a + b }{/tex}Hence,\xa0{tex} \\sqrt { 2 }{/tex}\xa0lies between\xa0{tex} \\frac { a } { b }{/tex}\xa0and\xa0{tex} \\frac { a + 2 b } { a + b }{/tex}.
27204.

149 ×789

Answer» 117561
117561
27205.

IFind the angle of x if 2sinx=sin2x

Answer»
27206.

k constant is multiplied or deleted from the polynomial before dividing it

Answer» The number which is been divided with the polynomial is the value of k and been cut off as they both are same .....EXAMPLE:- 2( x+y/2)2 will be cancelled out
27207.

Express the HCF of 468 and 222 as 468x + 222y where x,y are integersin two different waxs.

Answer» Given integers are 468 and 222 where 468 > 222.By applying Euclid’s division lemma, we get 468 = 222 × 2 + 24 …(i)Since remainder ≠ 0, apply division lemma on division 222 and remainder 24 222 = 24 × 9 + 6 …(ii)Since remainder ≠ 0, apply division lemma on division 24 and remainder 6 24 = 6 × 4 + 0 …(iii)We observe that the remainder = 0, so the last divisor 6 is the HCF of the 468 and 222From (ii) we have6 = 222 – 24 × 9⇒ 6 = 222 – [468 – 222 × 2] × 9 [Substituting 24 = 468 – 222 × 2 from (i)]⇒ 6 = 222 – 468 × 9 – 222 × 18⇒ 6 = 222y + 468x, where x = −9 and y = 19⇒ 6 = 222 × 19 – 468 × 9
27208.

Show that only one out of the n n plus two and n + 4 is divisible divisible by 3

Answer» Let the number be (3q + r){tex}n = 3 q + r \\quad 0 \\leq r < 3{/tex}{tex}\\text { or } 3 q , 3 q + 1,3 q + 2{/tex}{tex}\\text { If } n = 3 q \\text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}{tex}3 q \\text { is divisible by } 3{/tex}.{tex}\\text { If } n = 3 q + 1 \\text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}{tex}( 3 q + 3 ) \\text { is divisible by } 3{/tex}.{tex}\\text { If } n = 3 q + 2 \\text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}{tex}( 3 q + 6 ) \\text { is divisible by } 3{/tex}.{tex}\\therefore \\text { out of } n , ( n + 2 ) \\text { and } ( n + 4 ) \\text { only one is divisible by } 3{/tex}.
27209.

What is coincident

Answer» If a1 upon a2 = b1 upon b2= c1 upon c2 then these lines are concident (lines lies on one another)
27210.

Ak

Answer»
27211.

Why is 0!=1 ???

Answer» Aastha ???
??
0=(1/2^2-1/2^2)/(1/2-1/2) =(1/2+1/2)(1/2-1/2)/(1/2-1/2) =1/2+1/2=1
Because....of real number.
27212.

What is the formula of (a+b)²

Answer» Thanks dear...
a²+b²+2ab
a^2 + b^2 +2ab
a sq + b sq +2ab
27213.

What do you meant by the pair of linear equation is consistent

Answer» It means that both equation will have a unique solution
Hi
27214.

Pair of linear equations exercise 2

Answer»
27215.

Chapter 3whole

Answer»
27216.

The mean of 20 is 17 if 3is added to each other then find the mean

Answer»
27217.

what is a fundamental theorem of arithmatic

Answer» Every composite number can be expressed (factorised ) as a product of primes, and this factorisation is unique, apart from the order in which the prime factors occur.This theorem also says that the prime factorisation of a natural number is unique, except for the order of its factors.For example 20 can be expressed as 2×2×5Using this theorem the LCM and HCF of the given pair of positive integers can be calculated.LCM = Product of the greatest power of each prime factor, involved in the numbers.HCF = Product of the smallest power of each common prime factor in the numbers.
Every composite number is expressed as a product of prime and this factorisation is unique apart from the order at which the prime factors occur...
27218.

Show that reciprocal of 3+2√2 is an irrational number

Answer» First of all, rationalise the denominator of the reciprocal of 3 + 2√2.{tex}\\sf 3 + 2 \\sqrt{2} \\\\ \\\\ \\sf \\frac{1}{3 + 2 \\sqrt{2} } \\times \\frac{3 - 2 \\sqrt{2} }{3 - 2 \\sqrt{2} } \\\\ \\\\ \\sf \\frac{3 - 2 \\sqrt{2} }{(3 ){}^{2} - (2 \\sqrt{2} ) {}^{2} } \\\\ \\\\ \\sf \\frac{3 - 2 \\sqrt{2} }{9 - 8} \\\\ \\\\ \\bf 3 - 2 \\sqrt{2}{/tex}After rationalising its denominator, we get ( 3 - 2√2 ) as a result.Now, let us assume that ( 3 - 2√2 ) is an irrational number. So, taking a rational number i.e., 3 and subtracting from it.We have ;[ 3 - 2√2 - 3 ]⇒ - 2√2As a result, we get ( - 2√2 ) which is an irrational number.Hence, the reciprocal of ( 3 + 2√2) is an irrational number.\xa0
27219.

Solve the equation by subtuition method3x-5y-4=09x=2y+7

Answer» Thnkew
3x - 5y - 4 = 0 .....(1)9x = 2y + 7 .......(2)So multiply equation 1 by 3 to get9x - 15y - 12 = 0 ......... (3)Put (2) in (3)2y + 7 - 15y - 12 = 0- 13y - 5 = 0- 13y = 5y = 5/-13Put value of y in (2)9x = 2(5/-13) + 79x = - 10/13 + 79x = (-10+ 91)/139x = 81/13x = 9/13
27220.

Solve the equation by subtuition method.x+y=5x-3y=4

Answer» x\xa0+\xa0y\xa0= 5 ...\xa0(i)we getx\xa0= 5 -\xa0y Putting the value of\xa0x\xa0in equation\xa0(ii)\xa0we get5 –\xa0y – 3y\xa0= 4-4y\xa0= - 1y\xa0= 1/4\xa0Putting the value of\xa0y\xa0in equation\xa0(i)\xa0we getx\xa0= 5 – 1/4x\xa0= 19/4Hence,\xa0x\xa0= 19/4 and\xa0y\xa0= 1/4
27221.

Ex 14.1qno6

Answer» Actually there are 2 methods One is direct method of sigma f x /sigma fThen the answer is 8.1Second is step deviation method of A+sigma f d/sigma d× hThen the answer is also 8.1
27222.

If cossec 5/3 ,prove that tan /1+tan×tan=sin/sec

Answer»
27223.

If 3cot=2 ,find the value of 5sin-3cos/2sin+6cos

Answer»
27224.

If tan=24/7,find sin +cos

Answer» (24/25)+(7/25)=31/25
27225.

If cot=3/4 ,find 4 tan-5cos/sec-4cot

Answer»
27226.

How to prove √2 is irrational number?

Answer» Suppose\xa0{tex}\\sqrt2{/tex}\xa0is a rational number. That is ,\xa0{tex}\\sqrt2{/tex}\xa0=\xa0{tex}\\frac{p}{q}{/tex}\xa0for some p{tex}\\in{/tex}Z and q {tex}\\in{/tex}Z.\xa0We can assume the fraction is in lowest fraction, That is p and q shares no common factors.Then {tex}\\sqrt2q=p{/tex}\xa0Squaring both side we get,\xa0{tex}2q^2=p^2{/tex}So\xa0{tex}p^2{/tex}\xa0is a multiple of 2,let\'s assume\xa0{tex}p=2m{/tex}\xa0Then,\xa0{tex}2q^2=\\left(2m\\right)^2{/tex}\xa0{tex}2q^2=4m^2{/tex}Or {tex}q^2=2m^2{/tex}So {tex}q^2{/tex}\xa0is a multiple of 2,{tex}\\therefore{/tex} q is multiple of 2Thus p and q shares a common factor.This is contradiction.{tex}\\Rightarrow {/tex}{tex}\\sqrt { 2 }{/tex}\xa0is an irrational number.
27227.

All solutions of unit 3

Answer»
27228.

17+4[19-41(3-2)]

Answer»
27229.

Find the zeros of polynomial x square -m(m+3)

Answer» Wrong question
27230.

2 years ago salim was thrise three time age and 6 year later he will 4 year older than twice her age

Answer» Let Salim\'s present age be x years and his daughter\'s age be y years.Two years ago,Salim\'s age = (x - 2) yearsDaughter\'s age = (y - 2) yearsAs per given conditionTwo years ago, Salim was thrice as old as his daughter .\xa0x - 2 = 3(y - 2)x - 2 = 3y - 6{tex}\\Rightarrow{/tex} x - 3y = -4 .........(i)Six years hence,Salim\'s age = (x + 6) yearsDaughter\'s age = (y + 6) yearsAs per second conditionSix years later, he will be four years older than twice her age.x + 6 = 2(y + 6) + 4x + 6 = 2y + 12 + 4{tex}\\Rightarrow{/tex} x - 2y = 10 ...........(ii)Subtracting (i) from (ii), we havex - 2y - x + 3y =10 - ( -4)y = 14Put y = 14 in (i){tex}\\Rightarrow{/tex} x - 3(14) = -4{tex}\\Rightarrow{/tex} x - 42 = - 4{tex}\\Rightarrow{/tex} x = 38Therefore, the present age of Salim is 38 years and that of his daughter is 14 years.
27231.

Find the hcf of 1999 and 2105

Answer»
27232.

How do Euclid division lemma

Answer»
27233.

Sum of two no is 1000 and difference between their Square is 256000 find the no

Answer» Let us suppose that the numbers are x and y.According to question it is given thatThe sum of the two numbers is 1000.Thus, we have x + y = 1000The difference between the squares of the two numbers is 256000.Therefore, we have x2 - y2 = 256000{tex} \\Rightarrow{/tex}\xa0(x + y)(x - y) = 256000{tex}\\Rightarrow{/tex}\xa01000(x - y) = 256000{tex}\\Rightarrow x - y = \\frac{{256000}}{{1000}}{/tex}{tex}\\Rightarrow{/tex}\xa0x - y = 256Therefore, we have two equationsx + y = 1000 ......(1)x - y = 256 .....(2)Here x and y are unknowns.We have to solve the above equations for x and y.Adding equation (1) and (2), we get(x + y) + (x - y) = 1000 + 256{tex}\\Rightarrow{/tex}\xa0x + y + x - y = 1256{tex}\\Rightarrow{/tex}\xa02x = 1256{tex}\\Rightarrow x = \\frac{{1256}}{2}{/tex}x = 628Substituting the value of x in the equation (1) we get,\xa0628 + y = 1000{tex}\\Rightarrow{/tex}\xa0y = 1000 - 628{tex}\\Rightarrow{/tex}\xa0y = 372Therefore the numbers are 628 and 372.
27234.

Give rational approximation of root5 to two places

Answer»
27235.

How to get full mark in math\'s

Answer» Solve sample paper
Everyday solve at least 21 question
By solving questions in question paper????
By solving questions ??
27236.

How many two digit natural number is divisible by 7?

Answer» Two digit numbers which are divisible by 7 are 14,21,28,.....98.It forms an A.P.{tex}a = 14, d = 7, a_n = 98{/tex}{tex}a_n = a + (n - 1)d{/tex}{tex}98 = 14 + (n - 1)7{/tex}{tex}98 -14 = 7n - 7{/tex}{tex}84 + 7 = 7n{/tex}or, {tex}7n = 91{/tex}or, {tex}n = 13{/tex}
27237.

X 2y_+_ =-1and x-y _ =3 solve it by elimination method 2 3 3

Answer» {tex}\\frac{x}{2} + \\frac{{2y}}{3} = - 1{/tex} ....(1){tex}x - \\frac{y}{3} = 3{/tex} ...(2)\tElimination method: Multiplying equation (2) by 2, we get (3)\t{tex}2x - \\frac{2}{3}y = 6{/tex} ....(3)\t{tex}\\frac{x}{2} + \\frac{{2y}}{3} = - 1{/tex} ....(1)\tAdding (3) and (1), we get\t{tex}\\frac{5}{2}x = 5{/tex}\t\xa0⇒ x =2\tPutting value of x in (2), we get\t2− {tex}\\frac{y}{3}{/tex}= 3\t⇒ y =−3\tTherefore, x =2 and y =−3\tSubstitution method:{tex}\\frac{x}{2} + \\frac{{2y}}{3} = - 1{/tex} ....(1)\t{tex}x - \\frac{y}{3} = 3{/tex} ....(2)\tFrom equation (2), we can say that {tex}x = 3 + \\frac{y}{3} = \\frac{{9 + y}}{3}{/tex}\tPutting this in equation (1), we get\t{tex}\\frac{{9 + y}}{6} + \\frac{2}{3}y = - 1{/tex}\t{tex} \\Rightarrow \\;\\frac{{9 + y + 4y}}{6} = - 1{/tex}\t⇒ 5y +9=−6\t⇒ 5y =−15\t⇒ y =−3\tPutting value of y in (1), we get\t{tex}\\frac{x}{2} + \\frac{2}{3}( - 3) = - 1{/tex}\t⇒ x = 2\tTherefore, x =2 and y =−3.
27238.

Show that the square of any positive integer connot be form of 5q+2, 5q+3

Answer» Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get{tex}\\style{font-family:Arial}{\\begin{array}{l}n=5q+1,5q+2,5q+3\\;and\\;5q+4\\;\\\\\\end{array}}{/tex}Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;{tex}\\style{font-family:Arial}{\\begin{array}{l}(5q\\;+\\;1)^{\\;2}\\;=\\;25q^2\\;+\\;10q\\;+\\;1\\;=\\;5(5q^2\\;+\\;2q)\\;+\\;1\\;=\\;5m\\;+\\;1\\\\where\\;m\\;=\\;5q^2\\;+\\;2q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;2)^2\\;=\\;25q^2\\;+\\;20q\\;+\\;4\\;=\\;5(5q^2\\;+\\;4q)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;4q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;3)^{\\;2}\\;=\\;25q^2\\;+\\;30q\\;+\\;9\\;=\\;5(5q^2\\;+\\;6q+\\;1)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;6q\\;+\\;1,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;4)^2\\;=\\;25q^2\\;+\\;40q\\;+\\;16\\;=\\;5(5q^2\\;+\\;8q\\;+\\;3)\\;+\\;1\\;=\\;5m\\;+\\;1,\\;\\\\where\\;m\\;=\\;5q^2\\;+\\;8q\\;+\\;3,\\;which\\;is\\;an\\;integer\\\\\\end{array}}{/tex}Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.
27239.

Find the value of a and b so that x^4 +x^3+ 8x^2 +ax+b is divible by x^2 +1.

Answer» If {tex}x^4+x^3+8x^2+ax +b{/tex}\xa0is exactly divisible by x2 + 1, the remainder after division should be zero.Now let us perform long divisionWe get, remainder = x (a - 1) + (b - 7)\xa0x (a - 1) + (b - 7 ) = 0{tex}\\Rightarrow{/tex}\xa0x (a - 1) + (b - 7) = 0x + 0{tex}\\Rightarrow{/tex}\xa0a - 1 = 0 and b - 7 = 0\xa0[On equating the coefficients of like powers of x]{tex}\\Rightarrow{/tex}a = 1 and b = 7
27240.

Find H. C. F at 592 and 252. Express it in linear combination of 592 and 252

Answer» 592=252×2+88252=88×2+7688=76×1+1276=12×6+412=4×3+0Here,r=0So,HCF OF 592 & 252 is 4
We need to find the H.C.F. of 592 and 252 and express it as a linear combination of 592 and 252.By applying Euclid’s division lemma592 = 252 x 2 + 88Since remainder ≠ 0, apply division lemma on divisor 252 and remainder 88252 = 88 x 2 + 76Since remainder ≠ 0, apply division lemma on divisor 88 and remainder 7688 = 76 x 1 + 12Since remainder ≠ 0, apply division lemma on divisor 76 and remainder 1276 = 12 x 6 + 4Since remainder ≠ 0, apply division lemma on divisor 12 and remainder 412 = 4 x 3 + 0.Therefore, H.C.F. = 4.Now, 4 = 76 – 12 x 6= 76 – 88 – 76 x 1 x 6= 76 – 88 x 6 + 76 x 6= 76 x 7 – 88 x 6= 252 – 88 x 2 x 7 – 88 x 6= 252 x 7- 88 x 14- 88 x 6= 252 x 7- 88 x 20= 252 x 7 – 592 – 252 x 2 x 20= 252 x 7 – 592 x 20 + 252 x 40= 252 x 47 – 592 x 20= 252 x 47 + 592 x (-20)Hence obtained.
27241.

Dive p(x) =x^2+1-x by g(x)=x^2+1-x find qx and rx

Answer»
27242.

If√3tanthita=1 then find the value ofsin2thita-cos2thita

Answer» Root under 3tanthitha=1Tanthitha=1/root under 3》p=1 & b=rootunder 3》h=root under 4= 2Sin^2thitha-cos^2thitha》(p/h)^2 - (b/h)^2》1/4 - 3/4》- 2/4 = - 1/2
27243.

Write 3 integers between -5/4 and 11/3

Answer»
27244.

Define euclid\'s division algorithem

Answer» a=bq+r
For a pair of given positive integers ‘a’ and ‘b’, there exist unique integers ‘q’ and ‘r’ such thata=bq+r, where 0≤r?????
27245.

(A+b)^2 identity

Answer» A^2+b^2+2Ab
27246.

Rs Aggarwal exercise 3b question number 26

Answer» Abhi book niii h
Ques. Likh do please
Book nhi he?
27247.

(1) 5x - 4y + 8=0 7x + 6y - 9 =0

Answer» What should we have to do in this question to find solution or anything else?
27248.

Solve the follwing

Answer» But what we have to solve.....??????
27249.

1,1

Answer»
27250.

Mathematics class10 ch 3ex.3.1 ka pahla question

Answer»