Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 33201. |
Geih |
| Answer» | |
| 33202. |
sin A (1+ tan A)+ cos A(1 + cot A) =(sec A+ cosec A) |
| Answer» | |
| 33203. |
What is a pair of linear equation in two variables |
| Answer» ax + by+ c = 0 | |
| 33204. |
Slove x and y 139x+56y=641;56x+139y=724 |
| Answer» | |
| 33205. |
If one root of the equation x square +7x+k=0 is -2,then find the value of k and the other root |
| Answer» Given equation,x^2 + 7x + k = 0 , given root -2Substituting value of x = -2 in the equation4 - 14 + k = 0k = 10Now the equation is x^2 +7 x + 10 = 0Or x^2 + 2x + 5x + 10\xa0= x(x + 2) + 5( x + 2)= (x + 5)(x + 2)x= -5, -2,so, other value of x is -5 | |
| 33206. |
Solve this : (*= square)12y* - 12 √3y -72 |
| Answer» Y*-root3-6Y*(-2root3y+3y)-6Y(Y-2root3)root3(Y-2root3)Y=2root3 and Y=-root3 | |
| 33207. |
Explain chapter 8 example 2 page no 210 |
| Answer» Which book | |
| 33208. |
Find HCF of 5309 and 3072 and express in form of linear combination |
| Answer» | |
| 33209. |
Prove that x2+4x+5 has no real zeroes |
| Answer» f(x) = x4\xa0+ 4x2\xa0+ 5= (x2)2\xa0+ 4x2\xa0+ 5Let x2\xa0=n,Then, f(x) = n2\xa0+ 4n + 5,Here a=1,b=4,c=5The discriminant(D) = {tex}\\text{b}^2-4\\mathrm{ac}=\\;(4)^2-4\\times1\\times5=16-20=-4{/tex}Since the discriminant is negative so this polynomial has no zerosHence, f(x) = x4\xa0+ 4x2\xa0+ 5\xa0has no zero. | |
| 33210. |
Ghhhffghh |
|
Answer» swatantra Jahjhsjojabavvaa ???? |
|
| 33211. |
Two rails are represented by the equations x+2y-4=0and 2x+4y-12=0. |
| Answer» We have,{tex}x + 2y - 4=0{/tex}Putting {tex}y = 0{/tex}, we get{tex}x + 0 - 4 = 0{/tex}{tex} \\Rightarrow {/tex}\xa0{tex}x = 4{/tex}Putting x = 0, we get{tex}0 + 2y - 4 = 0{/tex}{tex} \\Rightarrow {/tex}\xa0{tex}y = 2{/tex}Thus, two solutions of equation {tex}x + 2y - 4 = 0{/tex} are:\tx40y02\tWe have,\xa0{tex}2x + 4y - 12 = 0{/tex}Putting {tex}x = 0{/tex}, we get{tex}0 + 4y - 12 = 0{/tex}{tex} \\Rightarrow {/tex}\xa0{tex}y = 3{/tex}Putting {tex}y = 0{/tex}, we get{tex}2x + 0(12) = 0{/tex}{tex} \\Rightarrow {/tex}\xa0x = 6Thus, two solutions of equation {tex}2x + 4y - 12 = 0{/tex} are:\tx06y30\tNow, we plot the points A (4, 0) and B (0, 2) and draw a line passing through these two points to get the graph of the line represented by the equations (i).We also plot the points P (0, 3) and Q (6, 0) and draw a line passing through these two points to get the graph of the line represented by the equation (ii).We observe that the lines are parallel and they do not intersect any where.REMARK The graphical representation of the above pair of linear equations provides us a pair of parallel lines.Let us write the pair of linear equations,{tex}x + 2y - 4 = 0{/tex}{tex}2x + 4y -12 = 0{/tex}as {tex}a_1x + b_1y + c_1=0{/tex}{tex}a_2x + b_2y +c_2 =0{/tex}where {tex}a_1=1, b_1= 2, c_1\xa0= -4{/tex},{tex}a_2\xa0= 2, b_2\xa0= 4\\ and \\ c_2\xa0= -12{/tex}{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { 1 } { 2 } , \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { 2 } { 4 } = \\frac { 1 } { 2 } \\text { and } \\frac { c _ { 1 } } { c _ { 2 } } = \\frac { - 4 } { - 12 } = \\frac { 1 } { 3 }{/tex}{tex}\\therefore \\quad \\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}will represent parallel lines, if{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}The converse is also true for any pair of linear equations.It follows from the above examples that the pair of linear equations{tex}a_1x + b_1y + c_1 = 0{/tex}{tex}a_2x + b_2y +c_2=0{/tex}will represent:\tintersecting lines, if\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } \\neq \\frac { b _ { 1 } } { b _ { 2 } }{/tex}\tcoincident lines, if\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}\tparallel lines, if\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex} | |
| 33212. |
Prove that (3+2√5)2whole bracket square is irrational |
|
Answer» Aap sharukh khan h kya 30 Not posible |
|
| 33213. |
Show that √6+√2 is irrational |
| Answer» | |
| 33214. |
1/2+√3 is an irrational number |
| Answer» | |
| 33215. |
If tanA+sinA=p and tanA-sinA=q, then prove that p square minus Q square =4 root p q |
| Answer» (x-2)+1=2x-3 | |
| 33216. |
X=1\\2+1\\2_1\\2+3x |
| Answer» | |
| 33217. |
What is the no. 2 |
| Answer» | |
| 33218. |
Add 52+45 |
|
Answer» Hii shriya from where r u ??? 97 97 97 5+2=7 and 5+4=9 so its 97 97 |
|
| 33219. |
Estimate the given products 61×47 |
| Answer» | |
| 33220. |
If sinA +cosA=m, secA+cosecA=n, then prove that n(m×m-1)=2m |
| Answer» SecA+cosecA(sinA+cosA-1)(sinA+cosA+1)=(sin^2A+cos^A+2sinAcosA-1)(secA+cosecA)=(1+2sinAcosA-1)(secA+ cosecA)={2sinAcosA×(1/cosA)}+{2sinAcosA×(1/cosA)}=2sinA+2cosA=2(sinA+cosA)=2m | |
| 33221. |
Hii V.K. |
| Answer» 10 bje online aana okk | |
| 33222. |
prove that :sec6ϴ=tan6ϴ+3tan2ϴsec2ϴ+1 |
| Answer» | |
| 33223. |
Ncrt |
| Answer» Its NCERT | |
| 33224. |
2coscos - 1/sin*cos |
| Answer» What is coscos | |
| 33225. |
Find the hcf of 2 and 4 |
| Answer» 2 | |
| 33226. |
Find the h.c.f of 176 and 38220 |
| Answer» Given numbers are 176 and 38220.Here, 38220 > 17By using Euclid\'s division lemma, we get\xa0a = bq + r, where 0<_r < b. Here a as dividend, b as divisor, q as quotient and r as remainderDividend = divisor {tex}\\times{/tex}\xa0quotient + remainderdividend = divisor {tex}\\times{/tex}\xa0quotient + remainder38220 = (176 {tex}\\times{/tex}\xa0217) + 28 Here r = 28\xa0{tex}\\ne{/tex}\xa00 and b = 176On taking 176 as the new dividend and 28 as\xa0the new divisor and then apply Euclid\'s division lemma, we get176 = (28\xa0{tex}\\times{/tex}\xa06) + 8Here remainder = 8\xa0{tex}\\ne{/tex}\xa00So, on taking 28 as dividend and 8 as the divisor and then apply Euclid\'s division lemma, we get28 = (8 {tex}\\times{/tex}\xa03) + 4Again, remainder = 4\xa0{tex}\\ne{/tex}\xa00On taking 8 as the dividend and 4 as the divisor and then apply Euclid\'s division lemma, we get 8 = ( 4 {tex}\\times{/tex}\xa02) + 0\xa0Here, remainder = 0 and last divisor\xa0is 4.Hence, HCF of 176 and 38220 is 4. | |
| 33227. |
x+√y=7√x+y=11 |
| Answer» 9 or 4 | |
| 33228. |
solve 2x+3y=11&2x-4y=-24 |
| Answer» 2x+3y=112x-4y=-24. Y=132x+3(13)=112x+39=112x=-28X=-14 | |
| 33229. |
State whether 35÷50 wil have a terminating decimal expansion or a non terminating repeating decimal |
| Answer» Its a terminating decimal | |
| 33230. |
8 men and 12 women can do a piece of work in 10 days while |
| Answer» Write whole question | |
| 33231. |
34578021567÷3×4 |
|
Answer» Using bodmas 46104 0 2 8 7 566 46104028756 |
|
| 33232. |
Hii V.S |
|
Answer» Hlw Sorry V.K. |
|
| 33233. |
In triangle PQR angel Qis 90 and SIN R IS 3/5write the value of cos P |
| Answer» | |
| 33234. |
Set of all tallest persons in your classroom |
| Answer» | |
| 33235. |
Exercise 3b question no. 33 |
| Answer» | |
| 33236. |
If two zeroes of a polynomial p(x)=x^3 -4x^2 -3x +12 are √3 and √-3, then find its 3rd zero. |
| Answer» | |
| 33237. |
Find a quadratic polynomial whose zeroes are -6 and -2/3. |
| Answer» X square -6x- 2/3 | |
| 33238. |
Textbook solution |
| Answer» | |
| 33239. |
Represent √13 on the number line |
| Answer» | |
| 33240. |
Value of root2 |
|
Answer» 1.414213562 1.4142135623730950488 1.414 1.414 1.414 |
|
| 33241. |
If a and b be two zero of the quadratic p( x)= 2x |
| Answer» | |
| 33242. |
Kitne marks ka ncert me ayega |
|
Answer» Reality me kitne parcent ata ha 95percent 60%ncert ayaga Full 80 marks 80 marks ka exam hota h 100 % ncert hota hai |
|
| 33243. |
Who is the father of geometry |
|
Answer» Euclids Euclids Euclids |
|
| 33244. |
Chapter 6 ex 6d question 25 |
| Answer» | |
| 33245. |
If a and b are the zeroes of the polynomial p(x)=3x^2-5x+6,find:(i)(a/b)+(b/a)and (ii)a^3+b^3 |
| Answer» | |
| 33246. |
What is the absolute value of -/-6/ |
|
Answer» 1/6 -/-6/=-6 6 6. 6 |
|
| 33247. |
Hello DV |
|
Answer» Okk Ni yrr time ni rhta Brainly nhi chalate ab Hey Vishu... |
|
| 33248. |
Find zeroes of√3x^2-8x+4√3 and verify relationship between zeroes and coefficients |
| Answer» | |
| 33249. |
Find k for which the given to is solution of the equation x2+3ax+k=0,x=-a |
|
Answer» K=2a+3a^2 which part of black sheep have wool |
|
| 33250. |
Show that √3 and 5 + 3√2 are irrational number. |
| Answer» ... | |