Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

33701.

85÷_=8500

Answer» 0.01
33702.

Find K so that (x^2+3x+k) is a factor of (x^4 -5x^2+4 ).

Answer» Hi
hiiii
33703.

Find four solutin for eqn. 4x - 2y = 5

Answer» (1.25,0) ,(0.75,-1) , (1,-0.5) ,(0,-2.5)
33704.

If the mean of 1,,3,4,5,6,7,4 is (m) and mean of 3,2,2,4,3,3 (p) is (m-1) and median is then p+q=

Answer»
33705.

X³+13x²+32x+20

Answer» The factors are (x+1)(x+2)(x+10)And the zeroes are - 1, - 2 & - 10
Kya krna h iska
33706.

Value of sin 30

Answer» Value of sin 30 is 1/2
Under root 3upon 2
33707.

Find HCF and Lcm of 18 and 24 by the prime factorisation method

Answer» Love you
24=18 (1)+618=6(3)+0HCF=6
33708.

Form a cubic polynomial with zeroes 3, 2 and -1

Answer» X cube - (alpha + bita + gama)x square+ ( alpha bita + bita gama + gama alpha)x+( alpha bota gama)Where alphabita ,gama is zeros of this polynomials
33709.

Tanx=3cotx find the value of x

Answer» x = 60
33710.

Factories by splitting Middle term 2x²+5√3+6

Answer» 2x^2+root3x+4root3x+6X(2x+root3)+2root3(2x+root3)(2x+root3)(x+2root3)
33711.

Verification of pythagorus theorum

Answer»
33712.

What is realtion between zero and cofficient of cubic polynomial not quadratic

Answer»
33713.

find zeros of cubic equation 2x3+x2-5x+2

Answer»
33714.

Sin60°•cos30° + sin30°•cos60

Answer» *Shivam Mishra* ??
1
1
Thanks for ur help shivam mishra????
Gghhygg
33715.

2.2-2.2

Answer» 1-1
0
0
33716.

If sn=6n_5nsquare ,find the 20th term

Answer»
33717.

If HCF (a,b)=9 ,and (a×b)=1800,then LCM (a,b)=200 .justify

Answer» Yes
It is a formula that product of HCF and LCM is=product of the two numbers..It is only applicable for two numbers
33718.

Find the zeroes of the polynomial x square + x - p (p+1)

Answer» (x)2+x-p(p+1)(X)2+x(p+1)_px-p(p+1)X(x+p+1)_p{x+(p+1)}(X-p)(x+p+1)X-p=pX+p+1=0X=_p_1 =_(p+1)
33719.

These question I ask for you to explain in detail not directly answer okk and thanks

Answer»
33720.

If x=5-√21/2, then prove (x^3+1/x^3)-5(x^2+1/x^2)+(x+1/x)=0

Answer»
33721.

Solvr 2+3/1999998

Answer»
33722.

Cube root of avagadro no

Answer» 84 446885.4
33723.

Xy/x

Answer»
33724.

The sum of two digit no is 16 and sum of their reciprocal is1/3. Find the no.

Answer» 12 and 4
12 and 4
33725.

What must be subtracted from the polynomial f(x) =x*4+2x*3-13x*2-12x+21

Answer» Ya where is gx
Where is g(x).........
33726.

d=-3,n=16,an=-5,then a

Answer» a=40
40
a=40
33727.

First four terms of the A.P.whose first term is -3 and common difference is 1/2 are

Answer»
33728.

In a A.P,a=10,An=60,Sn=140 then n is

Answer»
33729.

Condition for the system of linear equations ax+by=c;px+qy=r to have unique solution with solution

Answer»
33730.

If the sum of zeros of a given polynomial is x3-3kx2-x-30 if 6.Find k

Answer» 2
2
Check the question and type it again.
33731.

Find the sum of 10 terms of the AP 3√5, √5, 7/√5

Answer»
33732.

Is there any other method for finding compete square of a number other than given in this app?

Answer» Yes by multipling the given number with given number Syntex:- (a)^2 = a * a
33733.

Cbse class 10th ka result kb aa rha h frnds

Answer» 30th May
28th may
33734.

Show that 1. Tan 48 tan 23 tan 42 tan 67=1

Answer»
33735.

Explain why 7×11×13+1+13 is a composite number

Answer» Composit number :- a number whose factor 1 and itself , is called composit number.Here, 13 is common factor which is other than 1 and itself so , it is a composit number.
33736.

Find the number nearest to 110000 but graeter than 100000 which is exactly divisible by each 8,5,21

Answer» Can anyone solve this question
Please solve this question
33737.

3x +5y =2 2x - y = 3 , solve this by substitution method

Answer» Y =34-39/13-5/13
3x +5y= 2 ~equation 12x-y=3. Or 2x-3=y ~equ 2By putting the value of y in equation 2 we get3x+5×(2x-3)=23x+10x-15=213x=2+15X=17/13Then putting he value of x in equation 2 we get the value of y2(17/13)-3=yY=(34/13)-334-39/3Y=-5/3
Let, 3x+5y=2. is eq1 2x - y =3. is eq2In eq1, 3x + 5y =2 5y=2-3x y= 2 /5- 3x/5From eq1 we get, y= 2/5 - 3x/5 Now, We substitute y\'s value in eq2 2x - (2/5-3x/5)=3 2x -2/5+3x/5=3 10x-2+3x/5=3 13x-2=15 13X =15+2 X. =17/13Now, we find x=17/13 In eq1 we put x=17/13 3(17/13)+5y=2 51/13+5y=2 5y= 2-51/13 5y=26-51/13 5y=-25/13 Y= -25/13 ×5 Y=-5/13 Hence,we find x=17/13 and y= -5/13.
33738.

If two zeros of the polynomial x³-3x²+x+1and a-b, a, a+b find a and b

Answer» Given polynomial is f(x) = x3\xa0- 3x2\xa0+ x + 1Let\xa0{tex} \\alpha{/tex}\xa0= (a - b),\xa0{tex} \\beta{/tex}\xa0= a and\xa0{tex} \\gamma{/tex}\xa0= (a + b)Now,\xa0{tex} \\alpha + \\beta + \\gamma{/tex}\xa0=\xa0{tex} - \\frac { ( - 3 ) } { 1 }{/tex}⇒\xa0(a - b) + a + ( a + b ) = 3⇒ a - b + a + a+ b = 3⇒ a + a + a = 3⇒\xa03a = 3⇒ a = 3/3⇒\xa0a = 1Also,\xa0{tex} \\alpha \\beta + \\beta y + \\gamma \\alpha = \\frac { 1 } { 1 }{/tex}⇒\xa0(a - b)a + a (a + b) + (a + b)(a - b) = 1\xa0⇒\xa0a2\xa0- ab + a2\xa0+ab + a2\xa0- b2\xa0= 1⇒\xa03a2\xa0- b2\xa0= 1 ( ∵ a = 1)⇒\xa03(1)2\xa0- b2\xa0= 1( ∵ a = 1)⇒ 3 - b2 = 1⇒\xa0b2\xa0= 2⇒\xa0b =\xa0{tex} \\pm \\sqrt{2}{/tex}Hence, a = 1 and b =\xa0{tex} \\pm \\sqrt{2}{/tex}
33739.

Prove that cube root 3 is irrational

Answer»
33740.

Show that any positive odd integer is of the form 4q+ 3 where q is some whole number

Answer» By Euclid\'s division algorithm,a = bq + r = 4q + rTake b = 4.Since, 0 {tex}\\leqslant{/tex}\xa0r < 4, r = 0,1, 2, 3{tex} a=4q,4q+1,4q+2 ,4q+3{/tex}Clearly, a =4q=2(2q) and\xa04q+2=2×(2q+1)So 4q and 4q+2 are evenTherefore 4q + 1, 4q + 3 are odd, as they are proceeding numbers of even numbers 4q and 4q+2.{tex}\\therefore{/tex}\xa0Any positive odd integer is of form 4q+1 or 4q+3 .Where q is a positive integer.
33741.

If x(x)+2x+k is completely divisible by(x_1),then find the value of k

Answer» 2
33742.

If one zero of the polynomial (a2_9)x2+13x+6a is reciprocal of the other , find the value of a

Answer» Let {tex} \\alpha{/tex}\xa0and\xa0{tex} \\frac { 1 } { \\alpha }{/tex} be the zeros of\xa0(a2\xa0+ 9)x2\xa0+ 13x\xa0+ 6a.Then, we have{tex} \\alpha \\times \\frac { 1 } { \\alpha } = \\frac { 6 a } { a ^ { 2 } + 9 }{/tex}⇒\xa01 =\xa0{tex} \\frac { 6 a } { a ^ { 2 } + 9 }{/tex}⇒\xa0a2\xa0+ 9 = 6a⇒ a2 - 6a + 9 = 0⇒\xa0a2\xa0- 3a - 3a + 9 = 0⇒\xa0a(a - 3) - 3(a - 3) = 0⇒\xa0(a - 3) (a - 3) = 0⇒\xa0(a - 3)2\xa0= 0⇒\xa0a - 3 = 0⇒ a = 3So, the value of a in given polynomial is 3.
33743.

Solve the equation by cross multiplication method x+y=75x+12y=7

Answer» Sorry
x+y=7 5x+12y=7
33744.

Show that(5+2root3)ka square is irrational number

Answer» (5+2√3)² =5²+(2√3)²+2.2√325+12+4√3=37+4√3That\'s an irrational number
33745.

What is the syllabus of math first SA

Answer»
33746.

Solve equation graphicaly method equation..5x+7y=50,7x+5y=46

Answer» Khud kar
33747.

1 + cos theta + sin theta / 1 + cos theta - sin theta = 1 + sin theta / cos theta

Answer» LHS\xa0{tex} \\frac{{1 + \\cos \\theta + \\sin \\theta }}{{1 + \\cos \\theta - \\sin \\theta }}{/tex}Dividing numerator and denominator by cos{tex} \\theta {/tex}{tex}= \\frac{{\\frac{1}{{\\cos \\theta }} + \\frac{{\\cos \\theta }}{{\\cos \\theta }} + \\frac{{\\sin \\theta }}{{\\cos \\theta }}}}{{\\frac{1}{{\\cos \\theta }} + \\frac{{\\cos \\theta }}{{\\cos \\theta }} - \\frac{{\\sin \\theta }}{{\\cos \\theta }}}}{/tex}{tex}= \\frac{{\\sec \\theta + 1 + \\tan \\theta }}{{\\sec \\theta + 1 - \\tan \\theta }}{/tex}Multiplying and dividing by\xa0{tex} \\sec \\theta + 1 + \\tan \\theta {/tex}{tex}= \\frac{{\\sec \\theta + 1 + \\tan \\theta }}{{\\sec \\theta + 1 - \\tan \\theta }} \\times \\frac{{\\sec \\theta + 1 + \\tan \\theta }}{{\\sec \\theta + 1 + \\tan \\theta }}{/tex}{tex}= \\frac{{{{(\\sec \\theta + 1 + \\tan \\theta )}^2}}}{{{{(\\sec \\theta + 1)}^2} - {{\\tan }^2}\\theta }}{/tex}{tex}= \\frac{{{{\\sec }^2}\\theta + 1 + {{\\tan }^2}\\theta + 2\\sec \\theta + 2\\tan \\theta + 2\\sec \\theta \\tan \\theta }}{{1 + {{\\sec }^2}\\theta + 2\\sec \\theta - {{\\tan }^2}\\theta }}{/tex}Now,\xa0{tex} 1 + {\\tan ^2}\\theta = {\\sec ^2}\\theta {/tex}{tex}= \\frac{{2{{\\sec }^2}\\theta + 2\\sec \\theta + 2\\tan \\theta + 2\\sec \\theta \\tan \\theta }}{{2 + 2\\sec \\theta }}{/tex}{tex} = \\frac{{2\\left[ {\\sec \\theta (\\sec \\theta + 1) + \\tan \\theta (1 + \\sec \\theta } \\right]}}{{2(1 + \\sec \\theta )}}{/tex}{tex} = \\frac{{(\\sec + \\tan \\theta )(\\sec \\theta + 1)}}{{(1 + \\sec \\theta )}}{/tex}{tex} = \\sec \\theta + \\tan \\theta = \\frac{1}{{\\cos \\theta }} + \\frac{{\\sin \\theta }}{{\\cos \\theta }}{/tex}{tex}= \\frac{{1 + \\sin \\theta }}{{\\cos \\theta }} = RHS{/tex}
33748.

1/x-1/x-2=3. (Quadratic eq solve)

Answer» Ye bhi nhi aata
33749.

((x/a)sin c-(y/b)cos c)=1 and ((x/a)cos c+(y/b)sin c)=1....prove that : (x^2/a^2)+(y^2/b^2)=2

Answer» Hii
33750.

If tan theta=3\\4 then cos theta is

Answer» 1/4