Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 33901. |
find a polynomial whose zeros are square of the zeroes of the polynomial 3xsqrare+6x-9 |
| Answer» | |
| 33902. |
Prove root 2 i s irrational |
| Answer» Suppose\xa0{tex}\\sqrt2{/tex}\xa0is a rational number. That is ,\xa0{tex}\\sqrt2{/tex}\xa0=\xa0{tex}\\frac{p}{q}{/tex}\xa0for some p{tex}\\in{/tex}Z and q {tex}\\in{/tex}Z.\xa0We can assume the fraction is in lowest fraction, That is p and q shares no common factors.Then {tex}\\sqrt2q=p{/tex}\xa0Squaring both side we get,\xa0{tex}2q^2=p^2{/tex}So\xa0{tex}p^2{/tex}\xa0is a multiple of 2,let\'s assume\xa0{tex}p=2m{/tex}\xa0Then,\xa0{tex}2q^2=\\left(2m\\right)^2{/tex}\xa0{tex}2q^2=4m^2{/tex}Or {tex}q^2=2m^2{/tex}So {tex}q^2{/tex}\xa0is a multiple of 2,{tex}\\therefore{/tex} q is multiple of 2Thus p and q shares a common factor.This is contradiction.{tex}\\Rightarrow {/tex}{tex}\\sqrt { 2 }{/tex}\xa0is an irrational number. | |
| 33903. |
{A+b}2 |
| Answer» a2+2ab+b2 | |
| 33904. |
Represent the hcf of 1190 and 1445 in the form of 1190m × 1445n AMD also find the value of n and m |
| Answer» 2 | |
| 33905. |
Find the roots of eq. 5x² - 6x-2 =0 by the method of completing of square. |
| Answer» 5x2 - 6x - 2 = 0Multiplying the above equation by 1/5{tex} \\Rightarrow {x^2} - \\frac{6}{5}x - \\frac{2}{5} = 0{/tex}{tex}\\Rightarrow x ^ { 2 } - \\frac { 6 } { 5 } x + \\left( \\frac { 3 } { 5 } \\right) ^ { 2 } - \\left( \\frac { 3 } { 5 } \\right) ^ { 2 } - \\frac { 2 } { 5 } = 0{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 9 } { 25 } + \\frac { 2 } { 5 }{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 9 + 10 } { 25 }{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 19 } { 25 }{/tex}{tex}\\Rightarrow x - \\frac { 3 } { 5 } = \\pm \\frac { \\sqrt { 19 } } { 5 }{/tex}{tex}\\Rightarrow x = \\frac { 3 } { 5 } \\pm \\frac { \\sqrt { 19 } } { 5 }{/tex}{tex}\\Rightarrow x = \\frac { 3 + \\sqrt { 19 } } { 5 } \\text { or } x = \\frac { 3 - \\sqrt { 19 } } { 5 }{/tex} | |
| 33906. |
2.12345 |
| Answer» Means | |
| 33907. |
Chapter no. 1- real Numbers |
| Answer» | |
| 33908. |
What is the difference between zeroes and root of a polynomial? |
| Answer» Zero of a polynomial is a solution to the polynomial equation, P(x) = 0 but Root of a polynomial is that value of x that makes the polynomial equal to 0. | |
| 33909. |
Any body explain the answer of maths chapter 3 Exercise 3.1Q-1 |
|
Answer» Ok ... How ans. is coming I can help you |
|
| 33910. |
sin square theta + cos square theta equal to 1 verify |
| Answer» P^2+B^2=H^2. Dividing by H^2 on both sides. P^2/H^2+B^2/H^2=H^2/H^2. P^2/H^2=sin^2●. B^2/H^2=cos^2●. Sin^2●+cos^2●=1 | |
| 33911. |
How to solve matrix |
| Answer» | |
| 33912. |
Example 13 chapter 3 |
| Answer» See ncert solution | |
| 33913. |
4÷2 |
|
Answer» 2 2 Too much easy,ans is 2 2 2 2 |
|
| 33914. |
Which is the best books for board exams |
|
Answer» ncert only Exam idea is also good I think together with and Ulike |
|
| 33915. |
If the polynomial (6x)4+(8x)3+(17x)2+ |
| Answer» On long division of\xa06x4\xa0+ 8x3\xa0+ 17x2\xa0+ 21x\xa0+ 7 by 3x2\xa0+ 4x\xa0+ 1 we getQuotient = 2x2\xa0+\xa05, remainder = x + 2 | |
| 33916. |
x square - 8x +27= 0 |
| Answer» | |
| 33917. |
1/x-3 -1/x-5 =1/6 where x is not equal to 3,-5 |
| Answer» | |
| 33918. |
Father of maths |
|
Answer» Euclid... (BABA)????? Hi shayad S bhatacharya |
|
| 33919. |
if one zero of polynomial (a^2 +9)x^2 +13x +6a is reciprocal of the other ,fimd the value of a |
|
Answer» Other zero=1/aproduct of zero= 1/a*a=1But product of zero= 6a/a^2+91=6a/a^2+9a^2+9=6aa^2-6a+9=0a^2 - 3a-3a+9=0a(a-3)-3(a-3) = 0(a-3) ( a-3)=0Hence,a=3 a is 3 HY |
|
| 33920. |
if a is a square matrix of order 3 such that adj a=64 find (a) |
| Answer» We know that, for a square matrix of order n,\xa0|adj (A) |= |A|n-1\xa0Here, the order of A is 3{tex}\\times {/tex}3 ,therefore n = 3Now, |adj (A) | =|A|{tex}^{3-1}{/tex}\xa0= |A|2Given, |adj (A)|= 64,Therefore,64 =|A|2{tex}\\Rightarrow{/tex}\xa0(8)2 =|A|2{tex}\\Rightarrow{/tex}\xa0|A|= ± 8 [taking square root] | |
| 33921. |
Class 9th 10th all fourmula |
|
Answer» Ok Search it on google it is nit possible to write all formula here.?? |
|
| 33922. |
Factorise:x2 +2x+180 |
|
Answer» Simplyfying X+2x+2x=180Combine like terms x+2x=3x3x+2x=180Combine like term 3x+2x =5x 5x=180Solving for veriable \'x\' Move all term containing x to the left ,all other term to the right. Divide each side by \'5\'Simplyfying X=36 2x+20x+18x+1802x (x+10)+18(x+10)(X+10)(2x+18) |
|
| 33923. |
What is ment by consistent |
| Answer» Acting or done in the same way over time. | |
| 33924. |
Find the roots of quadratic equations by the method of completing the square:4x²+4√3x+3 |
| Answer» We have,\xa0{tex}4x^2 + 4 \\sqrt3 x + 3 = 0{/tex}{tex}\\implies (2x)^2 + 2 (2x) (\\sqrt3) + (\\sqrt3)^2 = 0{/tex}{tex}\\implies (2x + \\sqrt3)^2 = 0{/tex}{tex}\\implies 2x + \\sqrt3 = 0,\\, 2x + \\sqrt3 = 0{/tex}{tex}\\implies x = -{\\sqrt3 \\over 2},\\, -{\\sqrt3 \\over2}{/tex}{tex}\\therefore x = -{\\sqrt3 \\over 2},\\, -{\\sqrt3 \\over2}{/tex}\xa0are the required roots. | |
| 33925. |
Show that one and only one out of n,n+1 and |
| Answer» Bhai questions toh pura likha kar | |
| 33926. |
Show that the polynomial f(x) = x^4+4x^2+6 has no zero |
| Answer» f(x) = x4\xa0+ 4x2\xa0+ 6= (x2)2\xa0+ 4x2\xa0+ 6Let x2\xa0=n,Then, f(x) = n2\xa0+ 4n + 6,Here a=1,b=4,c=6The discriminant(D) = {tex}\\text{b}^2-4\\mathrm{ac}=\\;(4)^2-4\\times1\\times6=16-24=-8{/tex}Since the discriminant is negative so this polynomial has no zerosHence, f(x) = x4\xa0+ 4x2\xa0+ 6 has no zero. | |
| 33927. |
-2=4 |
| Answer» | |
| 33928. |
Fivide 5from 4 |
| Answer» | |
| 33929. |
2X+3y=7, 3x-2y=7 |
| Answer» | |
| 33930. |
(1+cot +tan)(sin -cos)=? |
| Answer» (1 + cot A + tan A)(sin A - cos A)= sin A - cos A + cot A sin A - cot A cos A + tan A sin A - tan A cos A=sin A - cos A +\xa0{tex}\\frac{cos A}{sin A}{/tex}\xa0{tex}\\times{/tex}\xa0sin A - cot A cos A + tan A sin A -\xa0{tex}\\frac{sin A}{cos A}{/tex}\xa0{tex}\\times{/tex}\xa0cos A=sin A - cos A + cos A - cot A cos A + tan A sin A - sin A=sin A tan A - cot A cos A | |
| 33931. |
Give 10 extra sums of mean and mode of class 10 |
| Answer» | |
| 33932. |
Evaluate: sec50° sin40° + cos40° cosec50° |
| Answer» | |
| 33933. |
Tan 20/cosec 70+ |
| Answer» 1 | |
| 33934. |
Find the smallest number which when divides 28 &32leaves a remainder 8 |
|
Answer» (28-8) & (32-8) and HCF of both number subtract 28 and 32 by 8 and then take out the HCF u will get your answer |
|
| 33935. |
Sin= |
|
Answer» Perpendicular /hypotenuse Sin=p/h or sin= 1/cosec p/h ????Sintheta=p/h P/h 1/cosec |
|
| 33936. |
Examine whether (240)n can end with the digit 5 for any n€N |
| Answer» | |
| 33937. |
If alpha and beta are zeroes of polynomial p(x)=x2+px+2 so find the value of p |
| Answer» | |
| 33938. |
Kon chapter |
| Answer» | |
| 33939. |
Write 98 as product of its prime numbers |
| Answer» 2×7^2 | |
| 33940. |
3 2 2p(x)= x - 3x + 5x - 3 g(x)=x - 2 |
| Answer» we have: g(x)=x-2 =0 =>x =2putting the value of g(x)=2 ; we get: p(x)= x - 3 + 5x - 3 g(2)= 2 - 3 + 5(2) - 3 = 2 - 3 + 5×2 - 3 = 2 - 3 + 10 - 3 = 12 - 6 = 6Hence, the value of x is 6. (second method)let, the polynomial p(x)is denoted by f(x). g(x)= x - 2 => x - 2 = 0 => x = 2.then, f(x)= x - 3 + 5x - 3 g(x)= x - 3 + 5x - 3 g(2) = 2 - 3 + 5×2 - 3 = 2 - 3 + 10 - 3 = 2 + 10 - 3 - 3 = 12 - 6 = 6Hence, the required value of x is 6. | |
| 33941. |
Find the zeros of the polynomial and verify the relationship between first x square minus x minus 12 |
| Answer» Find the zeros of the polynomial and verify the relationship between a square - x minus 12 | |
| 33942. |
What are the application of trignometry |
| Answer» H | |
| 33943. |
When results are announced |
| Answer» 30 may | |
| 33944. |
Find values of x ,y ,& z in given equation(1+x) (1+y)=4y(1+y) (1+z)=4z(1+z) (1+x)=4x |
| Answer» | |
| 33945. |
Prove that 3 = 4 |
| Answer» | |
| 33946. |
Find the current flowing in the given circuit and effective resistance |
| Answer» I think you write incomplete question | |
| 33947. |
Given the HCF(150,100)=0. Find LCM |
|
Answer» Hcf of 150 and 100 cant be 0 its 50And lcm is 300 LCM is also zero LCM is also 0 |
|
| 33948. |
Factorization of :1. X²+8x2. X⁴-13. x²-154. X⁴+x²+1 |
| Answer» Gg | |
| 33949. |
If the perimeter of a semicircle protactor is 66cm.find the diameter of the sphere |
| Answer» | |
| 33950. |
What is algebra? |
| Answer» Variable is a algebra because a,b,c,d,e,....... etc is variable so variable is a algebra | |